期刊文献+

不同碳源制备气相生长炭纤维的研究 被引量:2

DEVELOPMENT OF SYNTHESIS OF VAPOR-GROWN CARBON FIBERS FROM DIFFERENT CARBON SOURCES
下载PDF
导出
摘要 综述了几种不同的碳源,如低碳烃(甲烷、丙烯、乙炔和苯等)、脱油沥青、煤沥青,采用化学气相沉积(CVD)法,按不同转化过程制备出气相生长炭纤维(VGCFs)的研究现状.主要研究了以煤沥青为碳源、二茂铁为催化剂,借助CVD法制备气相生长炭纤维.经场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、X-射线衍射(XRD)及拉曼散射(Raman)分析,结果表明:产物主要为高纯度的VGCFs,直径分布均匀,外径大约为100nm,长度数微米,并初步探讨了煤沥青制备气相生长炭纤维的生长机理. The development of vapor-grown carbon fibers (VGCFs), which were synthesized by chemical vapor deposition method using low carbon hydrocarbon (methane, propylene, acetylene, benzene), deoiled asphalt and coal pitch as carbon sources, were reviewed. Preparation of VGCFs by CVD from coal pitch with ferrocene as catalyst precursor was mainly studied. The products were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and Raman spectrum. Results showed that the products mainly consist of pure and straight VGCFs with diameters of about 100 nm and length of several micrometers. The growth mechanism of VGCFs was also discussed.
出处 《煤炭转化》 CAS CSCD 北大核心 2007年第1期83-88,共6页 Coal Conversion
基金 国家自然科学基金资助项目(20471041) 国家"973"计划项目(2004CB217808) 国家自然科学基金重大研究计划项目(90306014) 山西省留学人员科研项目(200428) 山西省自然科学基金资助项目(20051018).
关键词 碳源 煤沥青 气相生长炭纤维 生长机理 carbon sources, coal pitch, vapor-grown carbon fibers, growth mechanism
  • 相关文献

参考文献46

二级参考文献140

共引文献106

同被引文献24

  • 1Lee M K van der,Dillen A J van,Geus J W,Jong K P de,Bitter J H.Catalytic growth of macroscopic carbon nanofiber bodies with high bulk density and high mechanical strength[J].Carbon,2006,44:629-637.
  • 2Zhang L,Austin D,Merkulov V I,et al.[J].Appl Phys Lett,2004,84:3972.
  • 3Huang Chao-Wei,Wu Hung-Chih,Lin Wang-Hua,Li Yuan-Yao.Temperature effect on the formation ofcatalysts for growth of carbon nanofibers[J].Carbon,2009,47:795-803.
  • 4Anderson P E,Rodriguez N M.Influence of the support on the structural characteristics of carbon nanofibers produced from the metal-catalyzed decomposition of ethylene[J].Chem Mater,2000,12(3):823-830.
  • 5Derbyshire F G,Trimm D L.Kinetics Of The Deposition Of Pyrolytic Carbon On Nickel[J].Carbon,1975,13:189-192.
  • 6Zhang D S,Shi L Y,Fang J H,Dai K.Removal of NaCl from saltwater solution using carbon nanotubes/activated carbon composite electrode[J].Mater Lett,2006;60:360-363.
  • 7Liu C-G,Fang H-T,Wang D-W,Cheng H-M,et al.[J].New Carbon Materials,2005,20:205-210.
  • 8Warheit D B,What is currently known about the health risks related to carbon nanotube exposures?[J].Carbon,2006,44:1064-1069.
  • 9Veziri Ch M,Pilatos G,Karanikolos G N,Labropoulos A,Kordatos K,Kasselouri-Rigopoulou V,et al.Growth and optimization of carbon nanotubes in activated carbon by catalytic chemical vapor deposition[J].Micropor Mesopor Mat,2008,110(1):41-50.
  • 10Chen X-W,Timpe O,Hamid S B A,Schl(o)gl R,Su D S.Direct synthesis of carbon nanofibers on modified biomass-derived activated carbon[J].Carbon,2009,47:340-343.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部