期刊文献+

磁化等离子体覆盖二维导体目标FDTD分析 被引量:2

FDTD analysis of 2-dimensional conducting target coated with anisotropic magnetized plasma
下载PDF
导出
摘要 采用z变换方法把FDTD推广应用于二维各向异性色散介质—磁化等离子体中,该算法同时解决了电磁波在各向异性和频率色散介质中传播的问题,给出了各向异性磁化等离子体中FDTD迭代公式。计算了各向异性磁化等离子体涂敷Von Karman型导体柱前后其单站RCS的变化情况,分析了等离子体参数对其RCS的影响。结果表明恰当地选择等离子体参数能有效地减少目标的RCS。 The finite-difference time-domain(FDTD) method is extended to two dimensional anisotropic dispersive media-magnetized plasma by using z transformation. This leads to the electromagnetic wave propagation of both anisotropy and frequency dispersion media can be solved at the same time. The two dimensional FDTD update formulations for anisotropic magnetized plasma are presented in this paper.. For the electromagnetic scattering of Von Karman shaped conducting cylinder coated with anisotropic magnetized plasma, the effect of the plasma parameters on the backscattering cross section is investigated and some monostatic numerical results are obtained. The results indicate that an appropriate plasma coating may efficiently reduce the RCS of a metallic target.
出处 《电波科学学报》 EI CSCD 北大核心 2006年第6期925-928,934,共5页 Chinese Journal of Radio Science
基金 国家自然科学基金资助项目(批准号:60471002)
关键词 时域有限差分方法 各向异性磁化等离子体 FDTD, anisotropic magnetized plasma
  • 相关文献

参考文献17

  • 1K S Yee. Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media [J]. IEEE Trans Antennas Propagat, 1966, 14(5):302-307.
  • 2R Luebbers, F P Hunsberger, K S Kunz, et al.. A frequency dependent finite-difference time-domain formulation for dispersive material [J]. IEEE Trans Eleetromagn Compat, 1990, 32(3): 222-227.
  • 3T Kashiwa, N Yoshida, I Fukai. Transient analysis of a magnetized plasma in three-dimensional space [J]. IEEE Trans Antennas Propagat, 1988, 36(8):1096- 1105.
  • 4L J Niekiseh, P M Franke. Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere [J]. IEEE Antennas Propagat Mag, 1992,34(1): 33-39.
  • 5O P Gandhi, B Q Gao, T Y Chen. A frequency-dependent finite-difference time-domain for general dispersive media [J]. IEEE Trans Microwave Theory Technol,1993,41(4) : 658-664.
  • 6D M Sullivan. Frequency-dependent FDTD methods using Z transforms [J]. IEEE Trans Antennas Propa-gat, 1992, 40(10): 1223-1230.
  • 7C/Chen, M Katsurai, P H Aoyagi. An FDTD formulation for dispersive media using a current density [J].IEEE Trans Antennas Propagat, 1998, 46(10): 1739-1745
  • 8J L Young. A full finite difference time domain implementation for radio wave propagation in a plasma [J]. Radio Sei, 1994, 29:1513-1522.
  • 9J L Young. Propagation in linear dispersive media.. Finite difference time-domain methodologies [J]. IEEE Trans Antennas Propagat, 1995, 43(4): 422-426.
  • 10D F Kelley, R J Luebbers. Pieeewise linear recursive convolution for dispersive media using FDTD [J].IEEE Trans Antennas Propagat, 1996, 44 (6), 792-797.

二级参考文献53

  • 1高本庆,陈金元.色散媒质中电磁场的时域有限差分算法[J].中国科学(A辑),1994,24(5):538-545. 被引量:14
  • 2H.G.布克 刘曾厚(译).冷等离子体波[M].北京:科学出版社,1985..
  • 3朱绪宝 陆红.等离子体隐身技术及其应用[J].隐身技术,1999,(2).
  • 4(苏)B.Л.金兹堡.电磁波在等离子体中的传播[M].北京:科学出版社,1978.41-98.
  • 5陈达章 刘鹏程.电磁理论[M].西安:西安电子科技大学,1987.259-269.
  • 6刘少斌 莫锦军 等.不均匀非磁化等离子体球隐身的研究.全国微波毫米波会议[M].,2001.830-832.
  • 7[1]Yee K S 1966 IEEE Trans.Antennas Propagat.14 302
  • 8[2]Luebbers R J,Hunsberger F,Kunz K S,Standler R and Schneier M 1990 IEEE Trans.Electromagn.Comput.32 222
  • 9[3]Luebbers R J,Hunsberger F and Kunz K S 1991 IEEE Trans.Antennas Propagat.39 29
  • 10[4]Hunsberger F,Luebbers R and Kunz K 1992 IEEE Trans.Antennas Propagat.40 1489

共引文献125

同被引文献18

  • 1Lubbers R J, Hunsberger F, Kunz K S. A Frequency Dependent Finite-difference Time-domain Formulation for Transient Propagation in Plasma[ J]. IEEE Trans on Antennas Propagat, 1991, 39( 1):29-34.
  • 2Kelley D F, Luebbers R J. Piecewise Linear Recursive Convolution for Dispersive Media Using FDTD[ J]. IEEE Trans on Antennas Propagat, 1996, 44(6) :792-797.
  • 3Chen Q, Katsurai M, Aoyagi P H. A FDTD Romulation for Dispersive Media Using a Current Density[ J]. IEEE Trans on Antennas Propagat, 1998, 46(11) : 1739-1746.
  • 4Nickisch L J, Franke P M. Finite-difference Time-domain Solution of Maxwell' Equations for the Dispersive Ionosphere[ J]. IEEE Antennas Propagat Mag, 1992, 34(1) : 33-39.
  • 5Sullivan D M. Frequency-dependent FDTD Methods Using z Transforms[ J]. IEEE Trans on Antennas Propagat, 1992, 40(10) : 1223-1230.
  • 6Ginzburg V L. The Propagation of Electromagnetic Waves in Plasma [ M]. 2th Ed. New York: Pergamon, 1970.
  • 7Monzon J C, Damasks N J. Two-Dimensional Scattering by Homogeneous Anisotropic Rod[ J]. IEEE Trans on Antennas Propagat, 1986, 34(10) : 1243-1249.
  • 8VIDMAR R J. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers [J]. IEEE Trans. Plasma Sci., 1990, 18(4): 733- 741.
  • 9ROBSON A, MORGAN R and MEGER R. Demonstration of a plasma mirror for microwaves[J]. IEEE Trans. Plasma Sci. , 1992 20(6): 1036-1040.
  • 10MEGER R, FERNSLER R F, GREGOR J, et al. X- Band Microwave Beam Steering Using a Plasma Mirror [C]//Proceedings IEEE Aerospace Conference. Snowmass at Aspen, CO , USA, 1997, 4: 49-56.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部