期刊文献+

中文语义角色标注的特征工程 被引量:39

Feature Engineering for Chinese Semantic Role Labeling
下载PDF
导出
摘要 基于统计机器学习的语义角色标注在自然语言处理领域越来越受到重视,丰富多样的特征直接决定语义角色标注系统的性能。本文针对中文的特点,在英文语义角色标注特征的基础上,提出了一些更有效的新特征和组合特征:例如,句法成分后一个词、谓语动词和短语类型的组合、谓语动词类别信息和路径的组合等,并在Chinese Proposition Bank(CPB)语料数据上,使用最大熵分类器进行了实验,系统F-Score由89.76%增加到91.31%。结果表明,这些新特征和组合特征显著提高了系统的性能。因此,目前进行语义角色标注应集中精力寻找丰富有效的特征。 In the natural language processing field, researchers have experienced a growth of interest in semantic role labeling by applying statistical and machine-learning methods. Using rich features is the most important part of semantic parsing system. In this paper, some new effective features and combination features are proposed, such as next word of the constituent, predicate and phrase type combination, predicate class and path combination, and so on. And then we report the experiments on the dataset from Chinese Proposition Bank (CPB). After these new features used, the final system improves the F-Score from 89. 76% to 91. 31%. The results show that the performance of the system has a statistically significant increase. Therefore it is very important to find better features for semantic role labeling.
出处 《中文信息学报》 CSCD 北大核心 2007年第1期79-84,共6页 Journal of Chinese Information Processing
基金 自然科学基金(60575042 60503072 60675034)
关键词 计算机应用 中文信息处理 语义分析 语义角色标注 特征工程 最大熵分类器 computer application Chinese information processing semantic parsing semantic role labeling feature engineering maximum entropy classifier
  • 相关文献

参考文献10

  • 1S.Pradhan,K.Hacioglu,V.Krugler,et al.Support vector learning for semantic argument classification[J].Machine Learning Journal,2005,vol.60,no.1-3,11-39.
  • 2N.Kwon,M.Fleischman,E.Hovy.Senseval automatic labeling of semantic roles using Maximum Entropy models[A].Senseval-3:Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text[C].Barcelona,Spain:Association for Computational Linguistics,2004,129 132.
  • 3P.Koomen,V.Punyakanok,D.Roth,et al.Generalized Inference with Multiple Semantic Role Labeling Systems[A].In:Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005)[C].Ann Arbor,Michigan:Association for Computational Linguistics,2005,181 184.
  • 4N.Xue,M.Palmer.Annotating the Propositions in the Penn Chinese Treebank[A].In:Proceedings of the Second SIGHAN Workshop on Chinese Language Processing[C].Sapporo,Japan:2003,47 54.
  • 5M.Palmer,D.Gildea,P.Kingsbury.The Proposition Bank:An Annotated Corpus of Semantic Roles[J].Computational Linguistics,2005,31(1),71-106.
  • 6V.Punyakanok,D.Roth,W.Yih.The Necessity of Syntactic Parsing for Semantic Role Labeling[A].In:Proceedings of CoNLL-04[C].2004,1117-1123.
  • 7N.Xue,M.Palmer.Calibrating features for semantic role labeling[A].In:Proc.of the EMNLP-2004[C].Barcelona,Spain:2004.
  • 8N.Xue,M.Palmer.Automatic semantic role labeling for Chinese verbs[A].In:Proc.IJCAI2005[C].Edinburgh,Scotland:2005.
  • 9H.Sun and D.Jurafsky.Shallow semantic parsing of Chinese[A].In:Proceedings of NAACL 2004[C].Boston,USA:2004.
  • 10N.Xue,F.Xia.The Bracketing Guidelines for the Penn Chinese Treebank[D],IRCS Report 00-08 University of Pennsylvania,Oct 2000.

同被引文献342

引证文献39

二级引证文献252

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部