期刊文献+

定性仿真在锅炉状态监控和故障诊断中的应用 被引量:4

THE APPLICATION OF QUALITATIVE SIMULATION TO PROCESS MONITORING AND FAULT DIAGNOSIS OF BOILER
下载PDF
导出
摘要 本文简要地介绍了定性仿真方法的发展及其在锅炉状态监控和故障诊断中的应用,并以某一300 MW电站锅炉对流受热面为例,使用改进的半定量仿真器仿真出一段时间内的对流受热面出口温度的上下闭界,并与进行了定性化处理的出口温度测量数据流在动态范围内相交,有效地减少对流受热面出口温度的上下闭界,模型精炼后减少了原约束方程中参数的不确定性,使得后面进行的仿真结果更精确,从而证明使用该方法进行状态监控和故障诊断切实可行。 This paper briefly introduced the development of qualitative simulation and its application to process monitoring and fault diagnosis of boiler. In this article, an example of a convection heating surface of a 300MW power plant was discussed. According to an improvement method based on semiquantitative simulator, we derived the envelopes of delivery temperature in a short span, intersected the simulation results with the qualitatived processing observations, decreased the uncertainty of the model's parameters and refined the model. The simulation example demonstrated the method is valid for process monitoring and fault diagnosis.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2007年第1期12-14,共3页 Journal of Engineering Thermophysics
关键词 定性仿真 锅炉 状态监控 故障诊断 qualitative simulation boiler process monitoring fault diagnosis
  • 相关文献

参考文献10

  • 1Kuipers B. Qualitative Simulation. Artificial Intelligence,1986, 29(3): 289-338
  • 2Kuipers B, Berleant D. Using Incomplete Quantitative Knowledge in Qualitative Reasoning. In: Proceedings AAAI-88. St.Paul,MN,1988. 324-329
  • 3Bealeant D. Qualitative and Quantitative Simulation:Bridging the Gap. Artificial Intelligence, 1997, 95(2):215-255
  • 4Kay H. Numerical Behavior Envelopes for Qualitative Models. In: 6^th International Workshop on Qualitative Reasoning about Physical Systems QR 92. Ediburgh,Scotland, 1992. 252-267
  • 5Kay H. SQSIM: a Simulator for Imprecise ODE Models-Computers and Chemical Engineering, 1998, 23(1): 27-46
  • 6Kay H, Kuiper B. Semi-Quantitative System Identification. Artificial Intelligence, 2000, 119(1): 103-140
  • 7周颢,邵晨曦,白方周.数据流定性化方法研究[J].信息与控制,2002,31(2):102-105. 被引量:2
  • 8Kay H, Kuipers B. Numerical Behavior Envelopes for Qualitative Models. In proceedings of the Eleventh National Oonference on Artificial Intelligence. Washington D.O, 1993. 606-613
  • 9简金宝,罗慕华.一般约束最优化超线性与二次收敛的SQP拟可行方法[J].工程数学学报,2004,21(4):525-530. 被引量:2
  • 10范永胜,眭喆,姜学智,吕崇德.一种高精度的锅炉单相区段集总参数动态修正模型[J].中国电机工程学报,2000,20(1):50-54. 被引量:25

二级参考文献14

  • 1高自友,吴方.非线性约束条件下的SQP可行方法[J].应用数学学报,1995,18(4):579-590. 被引量:13
  • 2简金宝.SQP技术与广义投影相结合的次可行方向法[J].高校应用数学学报(A辑),1996(1):65-74. 被引量:7
  • 3上海锅炉厂研究所.锅炉单相区段动态特性的计算方法[J].电力技术通讯,1975,(5).
  • 4章臣樾,锅炉动态特性及其数学模型,1987年
  • 5上海锅炉厂研究所,电力技术通讯,1975年,5期
  • 6Wilson R B. A simplical algorithm for concave programming: Ph D Thesis[D]. Graduate School of Business Administration, Harvard University, 1963
  • 7Panier E R, Tits A L. A superlinearly convergent feasible method for the solution of inequality constrained optimization problems[J]. SIAM J Control & Optimization, 1987;25(4):934-950
  • 8Lucidi S. New results on continuously differentiable penalty function[J]. SIAM J on Optimization, 1992; 2:558-574
  • 9简金宝.[D].西安:西安交通大学,2000.
  • 10简金宝.一般约束最优化的拟乘子-强次可行方向法[J].数学杂志,1998,18(2):179-186. 被引量:5

共引文献26

同被引文献147

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程,2006,32(6):189-191. 被引量:3
  • 4谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006,28(9):1748-1751. 被引量:20
  • 5Rajakarunakaran S, Venkat P, Devaraj D, Surya P R K. Artificial neural network approach for fault detection in LPG transfer system. Applied Soft Computing, 2008, 8(1): 740 - 748
  • 6Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008, S(2): 985-995
  • 7Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129-136
  • 8Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721
  • 9Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074
  • 10Castro D, Ranson A, Matheus J, Hemandez K. Fault detection and identification in chemical processes using multi- variable statistical techniques and SVM for classification. In: Proceedings of ISA Monterrey 2002. North Carolina, USA: ISA Services Inc, 2002. 165-175

引证文献4

二级引证文献315

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部