期刊文献+

用统计物理的方法计算信源熵率 被引量:3

Computing the Entropy Rate of Information Source with Methods of Statistical Physics
下载PDF
导出
摘要 从数学模型的角度来说,信源和随机过程有着一一对应的关系。从混沌的角度来看,随机过程的多重分形谱是动力系统的重要特征,熵率只是多重分形维中特殊的一维,即信息维。该文指出了如何用统计物理的方法计算随机过程的多重分形维,以二态隐马尔可夫信源作为例子,该文计算了其熵率。计算结果和理论结果的比较表明,用统计物理的方法计算隐马尔可夫过程熵率具有实用价值。这一方法可以推广到一般信源熵率的数值计算。 From the mathematical point of view, information sources can be 1-to-1 mapped to stochastic processes. Known from the theory of chaos, multi-fractal of stochastic process is a key characteristic of its dynamics, of which entropy rate is a special fractal dimension named information dimension. The paper introduces methods of statistical physics to compute the multi-fractal of stochastic process so that the entropy rate of source can be obtained at once. Take binary hidden Markov processes as example, the paper demonstrate how this approach works. The results shows that the methods is applicable to numerically approximate the entropy rate of binary hidden Markov processes (BHMPs) in practical applications, and it can be applied in more generalized kinds of information sources.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第1期129-132,共4页 Journal of Electronics & Information Technology
基金 中国科技大学高水平大学建设重点项目 中国科学技术大学青年基金资助课题
关键词 信源 熵率 多重分形谱 隐马尔可夫过程 Information souee Entropy rate Multi-fractal Hidden Markov processes
  • 相关文献

参考文献10

  • 1朱雪龙.应用信息论基础[M].北京:清华大学出版社,1993..
  • 2Ephraim Y and Merhav N. Hidden Markov processes, IEEE Trans. Inform. Theory, 2002, 48(6): 1518-1569.
  • 3Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition. Proce. IEEE, 1989,77(2): 257-286.
  • 4Jacquet P, Seroussi G, and Szpankowski W. On the entropy of a hidden Markov process. In: Proceeding of the Data Compression Conference Snowbird, Oct, 2004: 362-371.
  • 5Chen. S, Zheng H, Liu H, and Wang X. Estimators for the entropy rate of binary hidden Markov proeeBses.http://prep.istic.ac.cn/does/1111587263574 html, 2005.
  • 6陈双平,郑浩然,童庆,王煦法...模糊逻辑与计算智能研究进展(2005年论文集)广东深圳.合肥:中国科学技术大学出版社,Apr2005.932-938.
  • 7陈双平,郑浩然,王煦法,黎志升..隐马尔可夫模型的混沌动力学分析.submited to Science in China Series E:Technological Sciences..http://prep.istic.ac.cn/docs/1111587034327.html,,2005..
  • 8周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性I.经典Renyi定义法[J].华东理工大学学报(自然科学版),2000,26(4):385-389. 被引量:27
  • 9周炜星,吴韬,于遵宏.多重分形奇异谱的几何特性II.配分函数法[J].华东理工大学学报(自然科学版),2000,26(4):390-395. 被引量:32
  • 10Mach J, Mas F, and Sagues F. Two representations in multifractal analysis. Journal of Physics A: Mathematical and General, 1995, 28(19): 5607-5622.

二级参考文献5

共引文献52

同被引文献34

  • 1汤晓浩.《原子能科学技术》2000—2010年载文被引统计分析[J].编辑学报,2011,23(S1):64-68. 被引量:6
  • 2姜斌,王宏强,黎湘,郭桂蓉.海杂波背景下的目标检测新方法[J].物理学报,2006,55(8):3985-3991. 被引量:22
  • 3朱雪龙.应用信息论基础[M].北京:清华大学出版社,1993..
  • 4Falconer K. Fractal Geometry: Mathematical Foundations and Applications (second edition) [M]. England: John Wiley & Sons, 2003: 3-108.
  • 5Meneveau C and Chhabra A. Two-point statistics of multifractal measures[J]. Physica A, 1990, 164: 564-576.
  • 6O'Neil J and Meneveau C. Spatial correlation in turbulence: Predications from the multifractal formalism and comparison with experiments[J]. Physics Fluids A, 1993, 5(1): 158-172.
  • 7Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995: 5-39.
  • 8Ji Ai-bing, Pang Jia-hong, and Li Shu-huan. Support vector machine for classification based on fuzzy training data[C]. Proceedings of the 5th International Conference on Machine Learning and Cybernetics, Dalian, 2006: 1609-1614.
  • 9ht tp://soma.ece.mcmaster.ca/ipix[EB/OL].
  • 10Hu Jing, Tung Wen-wen, and Gao Jian-bo. Detection of low-observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136-143.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部