6Liangyue Cao, Practical method for determining the minimum embedding dimension of a scalar time series [ J ],Physica D, 1997, 110:43-50
7Sato S, Sano M, Sawada Y. Practical methods of measuring the generalized dimension and the hrgest Lyapunov exponent in high dimensional chaotic systems [J]. Prog. Theory.phys., 1987, 77 (1)
8Chen T, Chen H. Approximation capability to functions of several variables, nonlinear functional and operators by radial basis function neuralnetworks [ J]. IEEE Transactions on Neural Networks , 1995, 32 (6): 904-910
9Michael T. Rosenstein. A practical method for calculating largest Lyapunov exponents from smallsets [ J ]. Physica D, 1993 (65) : 117 - 134
2Apostolos Serletis, Mototsugu Shintani, No evidence of chaos but some evidence of dependence in the US stock market. Chaos, Solitons and Fractals 17 (2003)449 - 454.
3Chris Brooks, Chaos in Foreign Exchange Market: A Sceptical View.Computational Economics 11:265-251,1995.
4William A. Barnett,et al.,Robustness of Nonlinearity and Chaos Tests to Measurement Error, Influence Method,and Sample size. Journal Economic Behavior and Organization Vol. 27 ( 1995 ) 301 - 320.
5Mototsugu Shintani, Oliver Linton, Nonparametric Neural Network Estimation of Lyapunov Exponents and Direct Test for Chaos. Journal of Econometrics. 120 (2004) 1 - 33.
6Whang Y. J. Linton O. ,The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic series. J Econometr 1999,91:1 -42.
7Eckmann J-P,Ruelle D. Ergodic theory of chaos and strange attractors.Rev Modern Ohys 1985,57:617 - 56.
8Eckmann J-P, Kamphorst SO, Ruelle D. Ciliberto S. Liapunov exponents from time series, Phys Rev A 1986 ;34:4971 - 9.
9Ramazan Gencay A statistical framework for testing chaotic dynamics via Lyapunov exponents, Physica D 89 ( 1996 ) 261 - 266.
10Oh S K, Kim D W and Pedrycz W 2002 International Journal of Uncertainty Fuzziness and Knowledge-based Systems 10 257.