期刊文献+

支持向量机在机械故障诊断中的应用 被引量:2

Application of support vector machine in machinery fault diagnosis
下载PDF
导出
摘要 提出了一种基于支持向量机的机械故障诊断模型,该模型建立在VC维理论和结构风险最小原理基础上,根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,以期获得最好的推广能力。在选取诊断模型输入向量时,对故障信号功率谱进行小波分解,简化了故障特征向量的提取。仿真结果验证了该模型的有效性。 A machinery fault diagnosis model based on support vector machine (SVM) was proposed. The model was built on Vapnik-Chervonenkis dimension and structural risk minimization principle. According to limited sample information, the model seeks the optimal approach between complexity and study ability of the model so that it can obtain good extending ability. In selecting input vectors, the power spectrum of fault signals are decomposed by wavelet analysis, which predigests choosing meth- od of fault eigenvectors. The simulation results show the validity of the model.
出处 《河北工业科技》 CAS 2007年第1期37-39,42,共4页 Hebei Journal of Industrial Science and Technology
基金 中国博士后科学基金资助项目(2005038515)
关键词 小波包分析 故障诊断 支持向量机 核函数 wavelet packet analysis fault diagnosis support vector machine kernel function
  • 相关文献

参考文献5

二级参考文献26

  • 1钟秉林,颜廷虎.基于基因遗传算法的概率因果诊断模型[J].机械工程学报,1995,31(6):34-39. 被引量:5
  • 2陈长征.旋转机构智能诊断方法研究[M].徐州:中国矿业大学,1998..
  • 3Denning D E. An intrusion detection model[ J ]. IEEE Transactions on Software Engineering. 1987 SE-13(2) :222-232.
  • 4Lunt T F, Tamaru A, Gilham F et al. A Real-Time Intrusion Detection Expert System (IDES) [ R ]. Menlo Park : SRI Computer Science Laboratory, 1992.
  • 5Doak J. Intrusion Detection: The Application of Feature Selection, A Comparison of Algorithms, and the Application of a Wide Area Network Analyzer [ D ]. MS thesis. Department of Computer Science, University of California, Davis, 1992.
  • 6Dedar H, Becker M, Simony D. A Neural Network Component fot an Intrusion Detection System [ A ]. In Proceedings of IEEE Symposium on Research in Computer Security and Privacy [ C] , Oakland, CA, May 1992.
  • 7Sarle W S. Neural networks and statistical models[A]. In Proceedings of 19th Annual SAS Users Group Int. Conf. [C]. Cary, NC,April 1994 : 1538-1550.
  • 8Lee W, Stolfo S J. Data Mining Approaches for Intrusion Detection [ A ]. In Proceedings of the 7th USENIX Security Symposium [ C ].San Antonio, TX, January 1998: 26-29.
  • 9Lee W, Stolfo S J, Chan P K. Learning patterns from UNIX processes execution traces for intrusion detection [ A]. In Proceedings of the AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management [ C ].Menlo Park: AKAI Press, 1997: 50-56.
  • 10Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 2000.

共引文献89

同被引文献14

引证文献2

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部