期刊文献+

多编队对地攻防对抗多层决策分析仿真与研究 被引量:14

Study and Simulation of Multi-level Decision-making in Multi-group Air to Ground Attack-defends Campaign
下载PDF
导出
摘要 针对编队协同对地攻击的攻防对抗系统的强对抗性、多目标性和多层次性,建立了三层决策模型,由最高决策层根据战场情况调配编队方案,将中间决策层和最低决策层建立成为两级主从递阶互动决策模式,建立Nash-Stackelberg-Nash决策方法求解对抗条件下双方中间决策层和最低决策层的联合最优策略。仿真结果表明该三层决策模型应用于编队协同对地攻防对抗决策系统,其中间决策层和最低决策层构成的两层对策系统能够较好的解决两层对抗决策问题;同时,最高决策层有效的控制了编队支援方案,达到了较好的作战效果。三层决策系统为作战对抗提供了有力的战场分析依据。 As to oppositional, multi-objective and multi-level characteristics of multi-group air to ground attack-defends campaign, a trilevel decision-making model was established. The highest level makes the plan of group, and the middle and the lowest level form a principal and subordinate two-level interactive decision-making model. In adiaon, a Nash.Stackelberg-Nash way was proposed to find out the optimal associated strategy of the middle and the lowest level, The trilevel decision-making model produces the favorable simulating effect. The middle-level and the lowest-level solve the problem of antagonized bilevel by Nash-Stackelberg-Nash way, and the highest-level controled the plan of group effectively. Therefore, the arithmatic offers a powerful and impersonal analysing way of military opposed situation.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第1期106-109,共4页 Journal of System Simulation
基金 航空基础科学基金(05D53021)
关键词 多编队协同对地攻击 攻防对抗 多层决策 Nash-Stackelberg-Nash决策 multi-group air to ground attack attack-defends compaign multi-level decision-making nash-stackelberg-nash strategy
  • 相关文献

参考文献6

  • 1Jose Cruz JR,Marwan A.Simaan.Moving Horizon Nash Strategies for a Military Air Operation[J].IEEE Transactions On Aerospace and Electronic Systems (S0018-9251),2002,38(3):989-998.
  • 2C I CHEN,J B CRUZ,JR.Stackelberg Solution for Two-Person Games with Biased Information Patterns[J].IEEE Transactions On Automatic Control (S0018-9286),1972,17(6):791-797.
  • 3M Simaan,J B Cruz,JR.A Stackelberg Solution for Games with Many Players[J].IEEE Transactions On Automatic Control (S0018-9286),1973,7:322-324.
  • 4Boleslaw Tolwinski.A Stackelgerg Solution Of Dynamic Games[J].IEEE Transactions on Automatic Control (S0018-9286),1983,28(1):85-93.
  • 5Jose Cruz JR,Marwan A.Simaan.Game-Theoretic Modeling and Control of a Military Air Operation[J].EEE Transactions On Aerospace and Electronic Systems (S0018-9251),2001,37(4):1393-1405.
  • 6Jose Cruz JR,Marwan A.Simaan.Modeling and Control of Military Operations Against Adversarial Control[C]//Proceedings of the 39th IEEE Conference on Decision and Control Sydney,Australia.2000.

同被引文献91

引证文献14

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部