期刊文献+

基于Gauss Ball^+的二次曲面细分解与识别 被引量:3

Gauss Ball^+ Based Quadratic Surface Sub-Decomposition and Recognition
下载PDF
导出
摘要 首先利用主曲率对网格进行粗分解,然后利用Gauss Ball+方法对每片子区域进行二次曲面的类型检测、细分解和重聚合,最后对细分的子网格区域中的二次曲面进行参数识别.实验结果表明,利用该方法可以自动、快速、准确地分解出零件中存在的二次曲面,可以很好地应用于逆向工程中二次曲面参数反求. The mesh was first decomposed into multiple rough segments using principal curvature. Then based on Gauss Ball^+ method, the algorithm detected the type of quadratic surface in each rough segment and sub-decomposed and re-clustered them. Finally it recognized each sub-decomposed meshes into quadratic surfaces. Results show that this method can quickly and automatically decompose quadratic surfaces from part, and can be well embedded into reverse engineering to recognize the parameters of quadratic surface.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第1期31-36,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 逆向工程 高斯球 主曲率 二次曲面 分解 reverse engineering Gauss Ball principal curvature quadratic surface decomposition
  • 相关文献

参考文献9

  • 1Alrashdan A,Motavalli S,Fallahi B.Automatic segmentation of digitized data for reverse engineering applications[J].IIE Transactions,2000,32(1):59-69
  • 2Benko P,Varady T.Segmentation methods for smooth point regions of conventional engineering objects[J].Computer-Aided Design,2004,36(6):511-523
  • 3Besl P J,Jain R C.Segmentation through variable-order surface fitting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(2):167-192
  • 4Chen Y H,Liu C Y.Quadric surface extraction using genetic algorithms[J].Computer-Aided Design,1999,31(2):101-110
  • 5单东日,柯映林.反求工程中点云数据的二次曲面特征提取技术[J].计算机辅助设计与图形学学报,2003,15(12):1497-1501. 被引量:23
  • 6Cantzler H,Fisher R B.Comparison of HK and SC curvature description methods[C] //Proceedings of the 3rd International Conference on 3-D Digital Imaging and Modelling,Edinburgh,2001:285-291
  • 7金涛,单岩,童水光.产品反求工程中基于几何特征及约束的模型重建[J].计算机辅助设计与图形学学报,2001,13(3):202-207. 被引量:18
  • 8Lukacs G,Martin R,Marshall D.Faithful least-squares fitting of spheres,cylinders,cones,and tori for reliable segmentation[C] //Proceedings of the 5th European Conference on Computer Vision,Freiburg,1998:671-686
  • 9刘元朋,张定华,张力宁.逆向工程中圆柱体提取方法的研究[J].计算机辅助设计与图形学学报,2005,17(9):1946-1949. 被引量:4

二级参考文献24

  • 1小西荣一.深见远造.线性代数--向量分析[M].沈阳:辽宁人民出版社,1981..
  • 2Chen Y H,Computer Aided Design,1999年,101页
  • 3赵凤治,约束最优化计算方法,1991年
  • 4小西荣一,深见远造.线性代数——向量分析,1981年
  • 5Gerhard R, Martin D L. Geometric primitive extraction using a genetic algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(9): 901~905.
  • 6Chen Y H, Liu C Y, Quadric surface extraction using genetic algorithms[J]. Computer Aided Design, 1999, 31(1): 101~110.
  • 7Hebert M, Ponce J. A new method for segmenting 3D scenes into primitives[A]. In: Proceedings of 6th International Conference on Pattern Recognition, Munich, 1982. 836~838.
  • 8Lozano-Perez T, Grimson W E L, White S J. Finding cylinders in range data[A]. In: Internaional Conference on Robotics and Automation, Raleigh, 1987. 202~207.
  • 9Lukacs G, Martin R, Marshall A D. Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation[A]. In: ECCV'98, 5th European Conference on Computer Vision, Freiburg, 1998. 671~686.
  • 10Newman T S, Flynn P J, Jain A K. Model-based classification of quadric surfaces[J]. CVGIP: Image Understanding, 1993, 58(2): 235~249.

共引文献40

同被引文献37

  • 1曾海飞,刘志刚,林志航.基于水平集的散乱数据点云曲面重构方法[J].西安交通大学学报,2006,40(5):614-617. 被引量:1
  • 2张洁,岳玮宁,王楠,汪国平.三角网格模型的各向异性孔洞修补算法[J].计算机辅助设计与图形学学报,2007,19(7):892-897. 被引量:24
  • 3Krishnamurthy V, Levoy M. Fitting Smooth Surfaces to Dense Polygon Meshes[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM. New Orleans, Louisiana, 1996: 313-324.
  • 4Eck M, Hoppe H. Automatic Reconstruction of B--spline Surfaces of Arbitrary Topological Type [C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM. New Orleans, Louisiana, 1996:325-334.
  • 5Hoppe H, Derose T, Duchamp T, et al. Piecewise Smooth Surface Reconstruction [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York, 1994: 295-302.
  • 6Moore D, Warren J. Approximation of Dense Scattered Data Using Algebraic Surfaces[C]//Proceedings of the 24th Annual Hawaii International Conference on System Sciences. Kauai, 1991 : 681-690.
  • 7Lukacs G, Martin R R, Marshall A D. Faithful Least--squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation[C]//Proceedings of the 5th European Conference on Computer Vision. Freiburg, Germany, 1998: 671-681.
  • 8Sarkar B, Menq C H. Parameter Optimization in Approximating Curves and Surfaces to Measurement Data[J]. Computer Aided Geometric Design, 1991, 8(4): 267-290.
  • 9Ma W Y, Kruth J P. Parameterization of Randomly Measured Points for Least Squares Fitting of B--spline Curves and Surfaces[J]. Computer--aided Design, 1995, 27(9): 663-675.
  • 10Floater M S, Hormann K. Surface Parameterization: a Tutorial and Survey[C]//Cambridge Workshop on Multiresolution in Geometric Modeling Berlin, 2005:157-186.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部