期刊文献+

非线性时间序列建模的异方差混合双AR模型 被引量:3

Heteroscedastic mixture double-autoregressive model for modeling nonlinear time series
下载PDF
导出
摘要 研究了可用于非线性时间序列建模的异方差混合双自回归模型(heteroscedastic mixture double- autoregressive model,HMDAR),给出了HMDAR模型的平稳性条件,利用ECM(expectation conditional maximization)算法来估计模型的参数,运用BIC(Bayes information criterion)准则来选择模型.HMDAR模型条件分布富于变化的特征使它能够对具有非对称或多峰分布的序列进行建模,将HMDAR模型应用于几个模拟和实际数据集均得到了较为满意的结果,特别是对波动较大的序列,HMDAR模型能比其他模型更好地捕捉到数据序列的特征. The heteroscedastic mixture double-autoregressive (HMDAR) model, which is designed to model nonlinear time series, is investigated in this paper. Firstly, the stationary conditions are derived. Secondly, the parameters are estimated via expectation conditional maximization (ECM) algorithm. Thirdly, the Bayes information criterion (BIC) is used to select the model. The varied feature of conditional distributions makes the HMDAR model capable of modeling time series with asymmetric or multimodal distribution. Finally, the model was applied to several simulated and real data sets with satisfactory results. Especially to a highly time-variant series, the HMDAR model shows better performance than other competing models in data capturing.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第6期879-885,共7页 Control Theory & Applications
基金 国家自然科学基金(60375003) 国家航空基金(03153059).
关键词 异方差混合双自回归模型 平稳性 BIC准则 ECM算法 非对称分布 多峰分布 条件异方差 heteroscedastic mixture double-autoregressive model stationarity Bayes information criterion expectation conditional maximization (ECM)algorithm asymmetric distribution multimodal distribution conditional heteroscedasticity
  • 相关文献

参考文献9

  • 1杨叔子,吴雅.时间序列分析的工程应用(第二册)[M].武汉:华中理工大学出版社,1994:1—47.
  • 2MCLACHLAN G J, PEEl D. Finite Mixture Model[M] //SHEWHART W A, WILKS S S. New York: John Wiley & Sons, Inc,2001:1 - 37.
  • 3LE N D, MARTIN R, RAFTERY A E. Modeling flat stretches, bursts,and outliers in time series using mixture transition distribution models[J]. J of the American Statistical Associatio, 1996, 91(436): 1504 -1515.
  • 4WONG C S, LI W K. On a mixture autoregressive model[J]. J of the Royal Statistical Society-B, 2000, 62(part 1): 95 - 115.
  • 5王红军,田铮.非线性时间序列建模的混合自回归滑动平均模型[J].控制理论与应用,2005,22(6):875-881. 被引量:16
  • 6BERCHTOLD A. Mixture transition distribution(MTD) modeling of heteroscedastic time serie[J]. Computational Statistics & Data Analysis, 2003, 41(3): 399 - 411.
  • 7MCLACHLAN G J, KRISHNAN T. The EM Algorithm and Extensions[M]//SHEWHART W A, WILKS S S. New York: John Wiley& Sons, Inc, 1997:166 - 175.
  • 8BENES V E. Existence of Finite invariant measures for Markov processes[J]. Proceedings of the American Mathematical Society, 1967,18(6): 1058 - 1061.
  • 9BOX G E E JENKINS G M, REINSEL G C. Time Series Analysis:Forecasting and Control[M]. 3rd ed. Engle-wood Cliffs: Prentice-Hall, 1994:101 - 102.

二级参考文献8

  • 1杨叔子 吴雅.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1994..
  • 2LE N D,MARTIN R,RAFTERY A E.Modeling flat stretches,bursts,and outliers in time series using mixture transition distribution models [J].J of the American Statistical Association,1996,91(436):1504-1515.
  • 3WONG C S,LI W K.On a mixture autoregressive model [J].J of the Royal Statistical Society,2000,62,part 1:95-115.
  • 4BENES V E.Existence of finite invariant measures for Markov processes [J].Proc of the American Mathematical Society,1967,18(6):1058-1061.
  • 5LOUIS T A.Finding the observed information matrix when using the EM algorithm [J].J of the Royal Statistical Society,1982,44(2):226-233.
  • 6茆诗松,王静龙,濮小龙.高等数理统计[M].北京:高等教育出版社;Heidelberg,Berlin:Springer-Verlag,1998.
  • 7BOX G E P,JENKINS G M,REINSEL G C.Time Series Analysis:Forecasting and Control [M].3rd ed.Engle-wood Cliffs,NJ:Prentice Hall,1994.
  • 8TONG H.Non-linear Time Series [M].New York:Oxford University Press,1990.

共引文献15

同被引文献30

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部