摘要
The 7XXX aluminum alloys having a microstructure with precipitate free zones (PFZ) nearby the grain boundary, have received a great deal of attention due to their high strength, light mass, and yet poor fracture toughness. Experimental investigation into the effect of microstructure on the ductility was well established and comprehensive in the literature. A micromechanical model using a unit cell including some voids and relevant microstructural features was created. The competition between intergranular and intragranular fracture was investigated by comparing the void growth velocity between PFZ and matrix. The effects of void aspect ratio, relative PFZ volume, orientation of PFZ on the ductility of 7XXX aluminum alloys were analyzed. The results show that the model can explain the effect of microstructure on the competition between intergranular and intragranular fracture.
The 7 ××× aluminum alloys having a microstructure with precipitate free zones (PFZ) nearby the grain boundary, have received a great deal of attention due to their high strength, light mass, and yet poor fracture toughness. Experimental investigation into the effect of microstructure on the ductility was well established and comprehensive in the literature. A micromechanical model using a unit cell including some voids and relevant microstructural features was created. The competition between intergranular and intragranular fracture was investigated by comparing the void growth velocity between PFZ and matrix. The effects of void aspect ratio, relative PFZ volume, orientation of PFZ on the ductility of 7××× aluminum alloys were analyzed. The results show that the model can explain the effect of microstructure on the competition between intergranular and intragranular fracture.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第A03期1219-1223,共5页
Transactions of Nonferrous Metals Society of China
基金
Project(2005CB623706) supported by the National Basic Research Program of China
关键词
铝合金
微观结构
延性
微化学
强度
aluminum alloys
micromechanical model
unit cell
intergranular fracture
intragranular fracture