摘要
Interpenetrating phase composites (IPCs) are a new class of composite materials with improved combinations of mechanical and physical properties. This study was performed on a new type of IPC called metal porous polymer composite (MPPC) with an interpenetrating network structure. Aluminum-polypropylene (AI-PE) and Aluminum-epoxy resin (Al-Ep) composites were produced by infiltrating the polymer in the aluminum foam. The composite microstructures were characterized using SEM observation. The compressive behavior and energy absorption characteristics of MPPC were investigated and compared with the aluminum foams. The compressive modulus of composite was compared with the VOIGT-REUSS bounds and HASHIN-SHTRIKMAN (H-S) bounds models. The experimental modulus of compressive tests falls well within the theoretical models.
Interpenetrating phase composites (IPCs) are a new class of composite materials with improved combinations of mechanical and physical properties. This study was performed on a new type of IPC called metal porous polymer composite (MPPC) with an interpenetrating network structure. Aluminum-polypropylene (Al-PE) and Aluminum-epoxy resin (Al-Ep) composites were produced by infiltrating the polymer in the aluminum foam. The composite microstructures were characterized using SEM observation. The compressive behavior and energy absorption characteristics of MPPC were investigated and compared with the aluminum foams. The compressive modulus of composite was compared with the VOIGT-REUSS bounds and HASHIN-SHTRIKMAN (H-S) bounds models. The experimental modulus of compressive tests falls well within the theoretical models.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第B02期439-443,共5页
Transactions of Nonferrous Metals Society of China
基金
Project supported by Conseil General de 1'Aube (district grant) and the European Social Fund