期刊文献+

2-自由度强非线性振动系统的参数识别 被引量:2

PARAMETER IDENTIFICATION OF STRONGLY NONLINEAR VIBRATION SYSTEMS OF 2-DOF
下载PDF
导出
摘要 提出了非线性多自由度系统的一种新的参数识别方法,研究了二次非线性的2-自由度系统.基于保守系统存在能量积分的特点,由系统的运动微分方程导出了哈密尔顿函数,并用它作为参数识别的数学模型.利用系统自由振荡条件下相坐标测量值集合对系统的哈密尔顿函数进行拟合,并用最小二乘法进行参数识别.不管系统非线性度的强弱如何,只要系统是保守的,这种方法就有效. A new parameter identification method for nonlinear multi - degree - of - freedom systems was presenthat there exists energy integral in conservative systems, the Hamihonian was derived and selected as the mathematic model of parameter identification. Hamihonian function was fitted with the test data, which were the value sets of phase coordinates measured in free oscillation of the systems, and the parameters were identified with the least square method. No matter the nonlinearity of the system is strong or weak, the presented technique is valid as long as the system is conservative.
作者 彭解华 彭卓
出处 《动力学与控制学报》 2007年第1期54-57,共4页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(19874019) 湖南省自然科学基金资助项目(05JJ3003)~~
关键词 非线性多自由度系统 参数识别 哈密尔顿函数 nonlinear multi - degree - of - freedom systems, parameter identification, Hamihonian function
  • 相关文献

参考文献16

  • 1[1]A H Nayfeh.Parametric identification of nonlinear systems.Computer and Structures,1988,20:487 ~ 493
  • 2[2]G Stry and D J Mook.An experimental study of nonlinear dynamic identification.Nonlinear dynamics,1992,3:1 ~ 11
  • 3[3]O Gottlieb and M Fieldman.Application of a Hilbert-transform based algorithm for parameter estimation of a nonlinear ocean system roll model.Journal of Offshore Mechanics and Arctic Engineering,1997,119:239 ~ 243
  • 4[4]M Feldman,Nonlinear free vibration identification via the Hilbert-transform.Journal of Sound and Vibration,1997,208:475 ~ 489
  • 5[5]K Yasada,S Kawamura and K Watanabe.Identification of nonlinear multi-degree-of-freedom systems (presentation of an identification technique).JSME International Journal Series Ⅲ,1988,31a:8 ~ 14
  • 6[6]K Yasada,S Kawamura and K Watanabe.Identification of nonlinear multi-degree-of-freedom systems (identification under noisy measurements).JSME International Journal Series Ⅲ,1988,31 b:302 ~ 309
  • 7[7]C M Yuan and B F Feeny.Parameter identification of chaotic systems.Journal of Vibration and Control,1998,4:405 ~425
  • 8[8]R.Bachmayer and L.Whitcomb.Adaptive parameter identification of an accurate nonlinear dynamical model for marine thrusters.J.Dynamic Systems,Measurement,and Control,2003,125:489 ~ 491
  • 9[9]R.P.Pacheco and V.Steffen Jr.Using orthogonal functions for identification and sensitivity analysis of mechanical systems.J Vibration and Control,2002,8:993 ~ 1021
  • 10[10]R.Ghanem and F.Romeo.A wavelet-based approach for model and parameter identification of nonlinear systems.International J.Nonlinear Mechanics,2001,36:835 ~ 859

同被引文献18

  • 1曾威,于德介.一种基于小生境遗传算法的迟滞非线性系统参数识别方法[J].动力学与控制学报,2004,2(1):82-86. 被引量:4
  • 2B Hong, L P Pey, T Y Soh. Structural parameter identification using robust genetic algorithm optimization method, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, Calfornia,2004, 19-22.
  • 3O Gottlieb, M Feldman. Parameter identification of nonlinear ocean mooring systems using the Hilbert transform. Journal of offshore Mechanics and Arctic Engineering, 1996, 118:29-36.
  • 4M Raghavendrachar, A E Aktan. Flexibility by multireference impact testing for bridge diagnostics. Journal of Structural Engineering,1992,118 (8) : 2186 -2203.
  • 5J S Kang, S K Park, S Shin. Structural system identification in time domain using measured acceleration. Journal of Sound and Vibration, 2005, 288 : 215-234.
  • 6G Kerschen, K Worden, Alexander F Vakakis, Past. Present and future of nonlinear system identification in structur al dynamics. Mechanical Systems and Signal Processing, 2006, 20 : 505 - 592.
  • 7D H Zhou, Y X Sun, Y G Xi, Z J Zhang. Extension of friendland' s separate-bias estimation to randomly time-varying bias of nonlinear systems. IEEE Transactions On Automatic Control, 1993, 38(8) : 1270 - 1273.
  • 8C J Zhang, Robert R Bitmesd. Subspace system identification for training-based MIMO channel estimation. Automatic, 2005, 41:1623 - 1632.
  • 9M Q Phan, J A Solbeck, L R Ray. A direct method for statespace model and observer/Kalman filter gain identification AIAA Guidance, navigation, and Control Conference and Exhibit, Providence, Rhode Island,2004 : 16 - 19.
  • 10W X Zhong. On precise integration method. Journal of Computational and Applied Mathematics ,2004, 163:59 -78.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部