期刊文献+

基于微粒群优化算法的空间优化决策 被引量:25

Spatial Optimal Search Based on Particle Swarm Optimization
下载PDF
导出
摘要 空间优化决策是GIS应用中复杂而又常见的问题。由于涉及到大量的组合,使用穷举法等方法难以找到最优的解决方案,因此需要运用新的理论方法来解决这类问题。微粒群优化算法是近年来新兴的一种优化技术,与GIS相结合可解决空间优化决策问题。首先,对微粒群优化算法和空间优化决策问题作了简单介绍;然后,基于人口密度、最短距离约束条件下,通过GIS技术,对微粒群优化算法用于空间优化决策的方法、实施过程作了详细阐述;接着,用4×4方格单元对PSO方法的正确性、有效性进行了验证;最后,以广州市芳村区为例,对该方法进行实例验证。通过实验,证明微粒群优化算法具有较好的收敛速度、较高的结果精度,是解决空间优化决策问题的一种有效方法。 The solutions to spatial optimal search are complex and important. Since combinatorial optimal problems are computationally difficult, brute-force search can hardly solve the problems. As a result, a novel approach is necessary to deal with them. Particle swarm optimization (PSO) is a new kind of optimal technique, which can solve complex nonlinear spatial optimal problems. This paper demonstrates that PSO solves the spatial optimal search based on GIS under the constraint conditions of population distribution and shortest path. The PSO treats each solution as a particle searching in D-dimensional hyperspace. Different from other optimal problems, the spatial optimal search is in 2-dimensional geographic space, in which each point includes X, Y coordinates. D is equal to 2n. Where n is the number of marketplaces. So the position vector of the particle i is (xi1,, yi1, xi2, yi2,…, xin, yin. Each particle flies over search space and its velocity vector is (vxi1, vyi1, vxi2, vyi2, …, vxin, vyin). The particles can adjust their positions and velocities according to the current optimal value p (t) and global optimal value pg. The work in this paper makes use of the control MapObject2.3 to extract the centroid coordinates, area and population density of each cell in the map of population distribution by means of the computer programming language. It initializes the parameters, computes the fitness value of each particle and finds the current optimal value and global optimal value which adjust the position and velocity of each particle until they satisfy the condition of maximal number of iterations or precision. Finally, it identifies the position of the particle with the global optimal value is the optimal location of the marketplaces. The contents of this paper include: first, this paper introduces the characteristic and research progress about PSO and spatial search. Secondly, the paper elaborates on the implementing procedure and method of spatial optimal search by using PSO and GIS under the constraint condition of population distribution and shortest path. Thirdly, the paper utilizes the 4×4 spatial regions as an example to prove the correctness and effectiveness of the proposed method. Finally, the paper further verifies this method by a case of Fangcun District, Guangzhou. It is concluded that particle swarm optimization is a robust method of solving spatial optimal search under complex conditions.
出处 《地理学报》 EI CSCD 北大核心 2006年第12期1290-1298,共9页 Acta Geographica Sinica
基金 国家杰出青年基金项目(40525002) 国家自然科学基金项目(40471105 40471106) "985工程"GIS与遥感的地学应用科技创新平台(105203200400006) 武汉大学测绘遥感信息工程国家重点实验室开放研究基金(37000-4106130)~~
关键词 微粒群优化算法 GIS 优化决策 广州市 particle swarm optimization GIS optimal search Guangzhou city
  • 相关文献

参考文献20

  • 1Angeline P J.Evolutionary optimization versus particle swarm optimization:philosophy and performance difference.Proceedings of the 7th Annual Conference on Evolutionary Programming,1998.601-610.
  • 2Kennedy J,Spears W M.Matching algorithms to problems:an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator.Proceedings of IEEE International Conference on Evolutionary Computation,Anchorage,AK,USA,1998.78-83.
  • 3任斌,丰镇平.改进遗传算法与粒子群优化算法及其对比分析[J].南京师范大学学报(工程技术版),2002,2(2):14-20. 被引量:34
  • 4沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:90
  • 5Kennedy J,Eberhart R C.Particle swarm optimization.Proceedings of IEEE International Conference on Neural Networks,Piscataway,NJ,1995.1942-1948.
  • 6Kennedy J,Eberhart R C.A new optimizer using particle swarm theory.Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan:IEEE,1995.39-43.
  • 7Openshow S,Steadman P.On the geography of a worst case nuclear attack on population of Britain.Political Geography Quarterly,1982,(1):263-278.
  • 8黎夏,叶嘉安.遗传算法和GIS结合进行空间优化决策[J].地理学报,2004,59(5):745-753. 被引量:48
  • 9Aerts J,Heuvelink G.Using simulated annealing for resource allocation.International Journal of Geographical Information Science,2002,16(6):571-587.
  • 10Jaramillo J H,Bhadury J,Batta R.On the use of genetic algorithms to solve location problems.Computers & Operations Research,2002,29:761-779.

二级参考文献46

  • 1董超俊,刘智勇,邱祖廉.基于混沌遗传算法的区域交通计算机控制配时优化[J].计算机工程与应用,2004,40(29):32-34. 被引量:9
  • 2王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 3[美]Z米凯利维茨著 周家驹 何险峰译.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 4[5]V. Tandon. NC End Milling Opimization Using Evolutionary Computation [ J ]. International Journal of Machine Tools and Manufacture, 2001,42: 595~ 605.
  • 5[7]F Zhang, D Xue. Optimal Concurrent Design Based upon Distributed Product Development Life-cycle Modeling[J]. Robotics and Computer Integrated Manufacturing, 2001, 17: 469~ 486.
  • 6[8]A R Cockshott, B E Hartman. Improving the Fermentation Medium for Echinocandin B Production Part Ⅱ: Particle Swarm Optimization[ J ]. Process Biochemistry, 2001, 36: 661 ~ 669.
  • 7Zhan H G, Lee Z P, Shi P et al. Retrieval of water optical properties for optically deep waters using genetic algorithms.IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5): 1123-1128.
  • 8Jin Y Q, Wang Y. A genetic algorithm to simultaneously retrieve land surface roughness and soil wetness. International Journal of Remote Sensing, 2001, 22(16): 3093-3099.
  • 9Holland J. Adaptation in Natural And Artificial Systems: An Introductory Analysis with Applications to Biology,Control, And Artificial Intelligence. Cambridge, Mass: MIT Press, 1992.211.
  • 10Goldberg D E. Genetic Algorithms in Search, Optimisation and Machine Learning, Reading, MA: Addison-Wesley,1989. 412.

共引文献180

同被引文献422

引证文献25

二级引证文献264

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部