期刊文献+

陆相生物气纵向分布特征及形成机理研究——以柴达木盆地涩北一号为例 被引量:14

原文传递
导出
摘要 生物气主要有两种生成途径:乙酸发酵和二氧化碳还原.一般,海相环境以二氧化碳还原型为主,而陆相淡水—微咸水沉积环境主要以乙酸发酵型为主,随着深度增加,二氧化碳还原所占比例提高.通过对中国柴达木盆地三湖地区涩北一号构造区新涩3-4井系列取样分析认为,生物甲烷的两种产生途径并不严格按照深度分布.乙酸发酵成因类型分布在浅层(160~400m)及井底部位(1650~1700m);近地表(50~160m)及中深部是二氧化碳还原型.浅层乙酸发酵型甲烷明显偏重的稳定碳同位素值与相对封闭的泥岩环境及相对有限的母质来源有关;而井底部位(1650~1700m)正常乙酸发酵型生物甲烷与粉砂岩为主的相对开放的环境有关,该层段水中极高的乙酸含量说明充分的营养供给不会造成甲烷碳同位素明显变化,同时也意味着本层段地下水活动强烈,从外界携带大量营养底物进入.分析结果同时表明一定浓度的烯类气体暗示着该区细菌活动性强的事实.商业性的聚集以CO2还原成因类型为主,乙酸发酵所占比例较少.
出处 《中国科学(D辑)》 CSCD 北大核心 2007年第1期46-51,共6页 Science in China(Series D)
基金 国家重点项目研究发展计划(批准号:2001CB209100) 中国博士后科学基金项目(批准号:2005037419)资助
  • 相关文献

参考文献22

  • 1Rice D D, Claypool G E. Generation, accumulation and resource potential of biogenic gas. Bull AAPG, 1981, 65:5-25.
  • 2Whiticar M J, Faber E, Schoell M. "Biogenic" methane formation in marine and freshwater environments:CO2 reduction vs. acetate fermentation-isotopic evidence. Geochim Cosmochim Acta, 1986,50:693-709.
  • 3Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol, 1999, 161:291-314.
  • 4Jenden P D, Kaplan I R. Comparison of microbial gases from the Middle America Trench and Scripps Submarine Canyon: implications for the origin of natural gas. Appl Geochem, 1986, 1( 6): 631-646.
  • 5Waldron S, Fallick A E, Hall A J. Comment on "Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen evidence". Geochim Cosmochim Acta, 1998, 62:369-372.
  • 6Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microb Ecol, 1999, 28:193-202.
  • 7Summons R E, Franzmann p D, Nichols p D. Carbon isotopic fractionation associated with methylotrophic methanogenensis.Org Geochim, 1998, 28(7-8): 465-475.
  • 8Koyama T. Gaseous Metabolism in Lake Sediments and Paddy Soils. In: Columbo U, Hobson G D, eds. Advances in Organic Geochemistry. New York: Macmillan, 1964. 363-375.
  • 9Cappenberg Th E, Jongejan E. Microenvironments for sulfate reduction and methane production in freshwater sediments. In:Krumbein W E, ed. Environmental Biogeochemistry and Geomicrobiology. Ann Arbor Sci Publ, Ann Arbor, MI, 1978, 129-138.
  • 10Kotelnikova S. Microbial production and oxidation of methane in deep subsurface. Earth-Sci Rev, 2002, 58:367-395.

二级参考文献19

  • 1顾树松,周翥红.柴达木盆地东部第四系天然气地化特征与分类[J].天然气工业,1993,13(2):1-6. 被引量:15
  • 2戴金星,陈英.中国生物气中烷烃组分的碳同位素特征及其鉴别标志[J].中国科学(B辑),1993,23(3):303-310. 被引量:53
  • 3周翥虹,周瑞年,管志强.柴达木盆地东部第四系气源岩地化特征与生物气前景[J].石油勘探与开发,1994,21(2):30-36. 被引量:40
  • 4Schoell M. Genetic characterization of natural gas.Bull AAPG,1983, 67:2225-2238.
  • 5Rice D D, Claypool G E. Generation accumulation and resource potential of biogenic gas. Bull AAPG, 1981, 65:5-25.
  • 6Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta, 1980, 44:649-661.
  • 7Jenden P D, Kaplan I R. Origin of natural gases in Sacramento Basin. California AAPG Bulletin, 1989, 73(4): 431-453.
  • 8Mattavelli L, Ricchiuto T, Martinenghi C. Deep iosotopic light methane in northern Italy. Bacterial Gas, 1992, 121 -132.
  • 9Lewis S D. Isotope compositions of gases in sediments from the Chile continental margin. Proceedings of the Ocean Drilling Program. Scientific Results, 1995, 141: 307-312.
  • 10Hunt J M, Miller R J, Whelan J K. Formation of C4-C7 hydrocarbons from bacterial degradation of naturally occurring terpenoids.Nature, 1980, 288:577-578.

共引文献30

同被引文献272

引证文献14

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部