期刊文献+

明胶基多孔碳球电极材料的制备及电化学性能研究 被引量:6

Gelatin-based Porous Carbon Beads: Preparation and Application as Electrodes in Super-capacitors
下载PDF
导出
摘要 超级电容器是一种新型的储能器件.它既能与二次电池、燃料电池组成混合动力系统.也可以单独作为储能器件,其应用范围正在不断的扩大。碳材料因其低廉的价格、高比表面积和实用性而成为最热门的电极材料。碳材料电极电容器的电容主要来源于界面的双电层。从某种程度上说.碳材料的比表面积、孔径大小、孔密度等物化性质直接影响着电容器的比容量。而碳材料的这些物化性质受到很多制备因素的影响。虽然容量密度的大小主要取决于碳基电极材料的比表面积。但是材料比表面积的大小并不与其容量密度成正比关系.这主要是由于碳基材料中小于2nm的微孔的存在.使得电解液不能够有效浸入而形成微电容,导致该部分微孔和比表面积不能形成有效电容。因而,如何改善孔径分布及活化材料表面,成为提高碳基材料容量密度的主要途径。 Gelatin-based porous carbon beads have been fabricated from gelatin micro-spheres by means of solidification, carbonization and chemical activation with KOH. The physical properties of gelatin-based porous carbon beads were studied by a t-plot method based on N2 adsorption isotherms. The gelatin-based porous carbon beads activated at 800 ℃ exhibited the largest specific surface area and resulted in the highest capacitance. Carbon/carbon super-capacitors cells assembled with the electrode materials in 1.0 mol. L^-1 NEt4BF4/acetonitrile electrolyte have also been studied. The electrochemical properties of gelatin-based porous carbon beads electrode were studied by using constant-current discharge tests. The results indicate that the gelatin-based porous carbon beads electrode is with good cycling stability and specific capacitance of 119.8 F·g^-1.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2007年第2期365-368,共4页 Chinese Journal of Inorganic Chemistry
关键词 明胶基多孔碳球 活化温度 超级电容器 性能 gelatin-based carbon beads activation temperature super-capacitor properties
  • 相关文献

参考文献10

  • 1Mastragostino M, Arbizzani C, Paraventi R, et al. J. Electrochem. Soc., 2000,147(2):407-412.
  • 2Alonso A, Ruiz V, Blanco C, et al. Carbon, 2006,44:441-446.
  • 3Wu Feng-Chin, Tseng Ru-Ling, Hu Chi-Chang, et al. Power Sources, 2005,144:302-309.
  • 4Ktz R, Carlen M. J. Electrochimica Acta, 2000,45:2483-2498.
  • 5Nomoto S, Nakata H, Yoshioka K, et al. Power Sources, 2001, 97-98:807-811.
  • 6Hu Z, Srinivasan M P. Micropor. Mesopor. Mater. 1999,27:11 -18.
  • 7Qu Deyang, Shi Hang. J. Power Sources, 1998,74:99-107.
  • 8Burke A. J. Power Sources, 2000,91:37-50.
  • 9Chan Kim. Power Sources, 2005,142:382-388.
  • 10WANG Gui-Xin(王贵欣), ZHAI Mei-Zhen(翟美臻), ZHOU Gu-Min(周固民). Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 2004,20(4):369-372.

同被引文献22

  • 1孙明礼,成荣明,徐学诚,陈奕卫,李伟.碳纳米管对酚类物质的吸附研究[J].东北师大学报(自然科学版),2004,36(4):71-75. 被引量:16
  • 2杨植,陈小华,刘云泉,陈宪宏,陈传盛,李文华,许龙山.碳纳米管的羟甲基化及其马来酸酐接枝研究[J].化学学报,2006,64(3):203-207. 被引量:9
  • 3王秀丽,林宏艳,卢海燕,刘国成.纳米碳球负载钯纳米粒子催化合成1,10-邻菲咯啉-5,6-二胺[J].应用化学,2006,23(11):1223-1227. 被引量:3
  • 4LONG R Q, YANG R T. Carbon nanotubes as superior sorbent for dioxin removal[J]. J Am Chem Soc, 2001, 123(9): 2058-2059.
  • 5LI Y H, WANG S G, ZHANG X F, et al. Adsorption of fluoride from water by aligned carbon nanotubes[J]. Mater Res Bull, 2003, 38(3): 469-476.
  • 6BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers[J]. J Am Chem Soc, 1938, 60: 309-319.
  • 7BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and distributions in porous substances Ⅰ: computations from nitrogen isotherms[J]. J Am Chem Soc, 1951, 73: 373-380.
  • 8WONG S S, JOSELEVICH E, WOOLLEY A T, etal. Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology[J]. Nature, 1998, 394: 52-55.
  • 9SUZUKI T, KANEKO K. Structural change of activated carbon fibers with desorption by in situ X-ray diffraction[J]. Carbon, 1988, 26(5): 743-745.
  • 10YANG J, SHEN Z M, HAO Z B. Preparation for highly mi croporous and mesoporous carbon from the mesophase pitch and its carbon foams with KOH[J]. Carbon, 2004, 42(8/9) :1872-1875.

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部