期刊文献+

统计关系学习模型Markov逻辑网综述 被引量:7

Survey of Markov Logic Networks
下载PDF
导出
摘要 统计关系学习是人工智能研究的热点,在生物信息学、地理信息系统和自然语言理解等领域有着重要应用,Markov逻辑网是将Markov网与一阶逻辑相结合的一种全新的统计关系学习模型。介绍了Markov逻辑网的理论模型和学习方法,并探讨了目前存在的问题和研究方向。 Statistical Relational Learning(SRL) is a highlight in AI research field, and has important applications on many areas, such as bioinformatics, geography information systems and natural language processing, etc. Markov Logic Networks (MLNs) are a kind of SRL model combining Markov networks and the first-order logic together. In this paper, we introduced the theory and learning methods of MLNs, as well as discussed current problems and directions for future work.
出处 《计算机应用研究》 CSCD 北大核心 2007年第2期1-3,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60496321 60373098 60173006) 国家"863"计划资助项目(2003AA118020) 吉林省科技发展计划重大资助项目(20020303 20030523)
关键词 统计关系学习 一阶逻辑 MARKOV网 机器学习 MARKOV逻辑网 Statistical Relational Learning First-Order Logic Markov Networks Machine Learning Markov Logic Networks
  • 相关文献

参考文献22

  • 1R Durbin,S Eddy,A Krogh,et al.Biological Sequence Analysis:Probabilistic Models of Proteins and Nucleic Acids[M].London:Cambridge University Press,1998.
  • 2P Domingos.Prospects and Challenges for Multi-relational Data Mining[J].ACM-SIGKDD Explorations:Special Issue on Multi-Relational Data Mining,2003,5(1):80-83.
  • 3L Holder,D Cook.Graph-based Relational Learning:Current and Future Directions[J].ACM-SIGKDD Explorations:Special Issue on Multi-Relational Data Mining,2003,5(1):90-93.
  • 4P Dempster,et al.Maximum Likelihood from Incomplete Data via the EM Algorithm[J].J.Royal Stat.Soc.,1977,B39:1-39.
  • 5J Neville,et al.Learning Relational Probability Trees[A].Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining[C].New York:ACM Press,2003.625-630.
  • 6L De Raedt,K Kersting.Probabilistic Logic Learning[J].ACMSIGKDD Explorations:Special Issue on Multi-Relational Data Mining,2003,5(1):31-48.
  • 7刘大有,齐红,孙舒杨,等.统计关系学习综述[A].中国人工智能学会第11届全国学术年会论文集:中国人工智能进展[C].北京:北京邮电大学出版社,2005.241-253.
  • 8M Richardson,P Domingos.Markov Logic Networks[D].Seattle,Washington,USA:Department of Computer Science and Engineering,University of Washington,2004.
  • 9P Domingos,M Richardson.Markov Logic:A Unifying Framework for Statistical Relational Learning[C].Banff,Canada:Proceedings of the ICML-2004 Workshop on Statistical Relational Learning and Its Connections to Other Fields,2004.49-54.
  • 10S Kok,P Domingos.Learning the Structure of Markov Logic Networks[A].Proceedings of the 22nd International Conference on Machine Learning[C].Bonn,Germany:ACM Press,2005.441-448.

共引文献1

同被引文献101

  • 1肖智,王明恺,谢林林.基于支持向量机的大学生助学贷款个人信用评价[J].清华大学学报(自然科学版),2006,46(z1):1120-1124. 被引量:20
  • 2孙舒杨,刘大有,孙成敏.基于后验概率的Markov逻辑网参数学习方法[J].吉林大学学报(理学版),2006,44(6):946-950. 被引量:3
  • 3于鹏,刘大有,欧阳丹彤.基于遗传与粒子群算法的Markov逻辑网学习研究[J].电子学报,2006,34(B12):2551-2555. 被引量:1
  • 4Taskar B , Abbeel P , Koller D . Discriminative probabilistic models for relational data[C]//Proceedings of Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI02). Edmonton,Canada, 2002
  • 5Taskar B, Wong M-F, Abbeel P, et al. Link prediction in relational data[C]//Neural Information Processing Systems Conference. Vancouver, Canada, December 2003
  • 6Segal E, Wang H, Koller D. Discovering molecular pathways from protein interaction and gene expression data[J]. Bioinformatics, 2003,19 : 264-272
  • 7Liao L, Fox D, Kautz H. Location-based activity recognition using relational Markov networks[C]//Proc, of the International Joint Conference on Artificial Intelligence (IJCAI). 2005
  • 8Bunescu R, Mooney R J. Relational markov networks for collective information extraction[C]//Proceedings of the ICML-2004 Workshop on Statistical Relational Learning (SRL-2004). Banff, Canada, July 2004
  • 9Pearl J. Probabilistic Reasoning in Intelligent Systems : Networks of PIausible Inference[M]. San Francisco: Morgan Kaufmann, 1988
  • 10Lafferty J, McCallum A,Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data [C]//Proc. ICML01. 2001

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部