摘要
统计关系学习是人工智能研究的热点,在生物信息学、地理信息系统和自然语言理解等领域有着重要应用,Markov逻辑网是将Markov网与一阶逻辑相结合的一种全新的统计关系学习模型。介绍了Markov逻辑网的理论模型和学习方法,并探讨了目前存在的问题和研究方向。
Statistical Relational Learning(SRL) is a highlight in AI research field, and has important applications on many areas, such as bioinformatics, geography information systems and natural language processing, etc. Markov Logic Networks (MLNs) are a kind of SRL model combining Markov networks and the first-order logic together. In this paper, we introduced the theory and learning methods of MLNs, as well as discussed current problems and directions for future work.
出处
《计算机应用研究》
CSCD
北大核心
2007年第2期1-3,共3页
Application Research of Computers
基金
国家自然科学基金资助项目(60496321
60373098
60173006)
国家"863"计划资助项目(2003AA118020)
吉林省科技发展计划重大资助项目(20020303
20030523)