期刊文献+

基于LS-SVM的小水电站年发电量智能预测模型 被引量:5

An Intelligent Forecasting Model for Annual Power Generation of Small Hydropower Stations Based on LS-SVM
下载PDF
导出
摘要 针对小水电站年发电量序列的特点,将最小二乘支持向量机(least squares support vector machine,LS-SVM)回归模型引入年发电量预测领域,并给出了相应的过程和算法。与常规基于人工神经网络(artificial neural net-works,ANN)的智能预测方法比较,该模型优点是明显的:①将神经网络迭代学习问题转化为直接求解多元线性方程;②整个训练过程中有且仅有一个全局极值点,确定了预测的稳定性。最后,一个实际的预测例子表明:该模型实现容易、预测准确,适用于小水电站预测。 Through analysis of the specialty of annual power generation series of small hydropower stattons, a regression mooel based on the least squares support vector machine (LS-SVM) was introduced into the field of annual energy production forecasting in this paper. The design steps and learning algorithm were also provided. Compared with conventional intelligent forecasting methods based on artificial neural networks (ANN), the proposed method has the advantages of: OThe LS-SVM model changes the iteration problem of neural network into a solution problem of a set of linear equations;(2)The global optimal solution can be uniquely obtained because there is only one global extremum in the training process. So the result of forecasting is stable. The application example proves that the proposed method is easy to realize with accurate prediction, and can be applied to small hydropower stations.
出处 《中国农村水利水电》 北大核心 2007年第2期93-95,98,共4页 China Rural Water and Hydropower
关键词 最小二乘支持向量机(LS-SVM) 小水电站 年发电量 时间序列 预测 least squares support vector machine ( LS- SVM) small hydropower stations annual power generation time series forecasting
  • 相关文献

参考文献8

二级参考文献6

  • 1王瑞骏,黄强.小水电站年发电量风险分析 王瑞骏;黄强[J].小水电,1995(6):13-16. 被引量:1
  • 2黄长征.中小型水电站发电量变化规律[J].水能技术经济,1988,(3).
  • 3王炜忻 杜金观 等.应用时间序列分析[M].南宁:广西师范大学出版社,1999..
  • 4George E.P.Box Gwilym M.Jenkins Gregory C.Reinsel著 顾岚 主译.时间序列分析:预测与控制[M].北京:中国统计出版社,1997..
  • 5黄长征.如何确定中小型水电站的计划发电量[J].水能技术经济,1987,(3).
  • 6朱成章.关于水电站能量指标的讨论[J].水能技术经济,1987,(4).

共引文献16

同被引文献42

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部