摘要
根据粘弹性理论,用拉氏逆变换推导出了由拉伸松弛模量E(t)和体积松弛模量K(t)求固体推进剂剪切松弛模量G(t)的一种积分方程式,并用迭代和数值积分法给出了求解G(t)的数值积分算法。算例表明,该法简单实用,便于用ANSYS等软件进行粘弹分析时输入参数的确定。经比较,可将此源于梯形积分公式的数值积分算法作为一种求解固体推进剂粘弹性参数的通用数值积分法。
An integral equation expression for shear modulus was derived from stress relaxation modulus and bulk modulus of solid propellant by using inversion of Laplace transform according to the viscoelastic theory in this paper. And a numerical integration method for the shear modulus solution was presented by means of iteration and numerical integration. Numerical computation results showed that this method was simple and practicable, which was convenient for determining input parameters when doing viscoelastic analysis using ANSYS and other softwares. This integration method that was originated from trapezoidal integration could be considered as a universal numerical integration method for solving the viscoelastic parameters of solid propellant.
出处
《上海航天》
北大核心
2007年第1期34-37,共4页
Aerospace Shanghai
关键词
固体推进剂
粘弹性
剪切模量
拉伸模量
体积模量
数值积分
Solid propellant
Viscoelasticity
Shear modulus
Stress relaxation modulus
Bulk modulus
Numerical integration