期刊文献+

一种求解固体推进剂粘弹性参数的通用数值积分法 被引量:1

A Universal Numerical Integration Method for Solving the Viscoelastic Parameters of Solid Propellant
下载PDF
导出
摘要 根据粘弹性理论,用拉氏逆变换推导出了由拉伸松弛模量E(t)和体积松弛模量K(t)求固体推进剂剪切松弛模量G(t)的一种积分方程式,并用迭代和数值积分法给出了求解G(t)的数值积分算法。算例表明,该法简单实用,便于用ANSYS等软件进行粘弹分析时输入参数的确定。经比较,可将此源于梯形积分公式的数值积分算法作为一种求解固体推进剂粘弹性参数的通用数值积分法。 An integral equation expression for shear modulus was derived from stress relaxation modulus and bulk modulus of solid propellant by using inversion of Laplace transform according to the viscoelastic theory in this paper. And a numerical integration method for the shear modulus solution was presented by means of iteration and numerical integration. Numerical computation results showed that this method was simple and practicable, which was convenient for determining input parameters when doing viscoelastic analysis using ANSYS and other softwares. This integration method that was originated from trapezoidal integration could be considered as a universal numerical integration method for solving the viscoelastic parameters of solid propellant.
出处 《上海航天》 北大核心 2007年第1期34-37,共4页 Aerospace Shanghai
关键词 固体推进剂 粘弹性 剪切模量 拉伸模量 体积模量 数值积分 Solid propellant Viscoelasticity Shear modulus Stress relaxation modulus Bulk modulus Numerical integration
  • 相关文献

参考文献7

二级参考文献2

共引文献35

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部