期刊文献+

基于滤波器组和高阶累积量的信号特征检测 被引量:4

SIGNAL FEATURE DETECTION BASED ON FILTER BANK AND HIGHER ORDER CUMULANTS
下载PDF
导出
摘要 结合高阶累积具有对加性高斯和对称非高斯噪声不敏感的特性,提出了一种基于滤波器组和高阶累积量的特征检测方法。该方法既不需待检信号做高斯和平稳的假设,也不需要有信号的先验知识。其原理是首先通过滤波器组将检测信号在频域上进行分离,选取输出能量较大的一组子频带信号近似给出信号的时频描述;然后在各个选中的子频带内分别计算三阶累积量的短时估计,从而抑制有色噪声,将信号的特征检测出来。仿真信号和实验信号验证了该方法的有效性和适应性,即使信号特征完全淹没在噪声中,也能检测出来。 Based on that higher-order cumulants are insensitive to add-Gaussian noise and symmetric noise,a method for detecting feature of signal embedded in additive noise is presented,in which a filter bank is combined with higher-order cumulants and neither the Gaussian and stationary supposition of the observed signal,nor a prior information about the waveform and arrival time of the observed signal is necessary.The primary principle of the proposed method is to separate the spectrum of the observed signal into narrow frequency bands by using a bandpass filter bank,whose subfilters which have large output energies are chosen to give a time-frequency description of the observed signal approximately,and each chosen subfilter is then followed by a short-time estimation of third-order cumulant so as to suppress colored noise and detect the signal feature.Simulated and experimental results show that the method is effective and practical,even if the signal feature is submerged into noise signal completely.
出处 《振动与冲击》 EI CSCD 北大核心 2007年第2期29-32,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(编号:50475087)
关键词 滤波器组 高阶累积量 短时估计 特征检测 filter bank,higher-order cumulant,short-time estimation,feature detection
  • 相关文献

参考文献6

二级参考文献15

  • 1马彦,石要武,孙文涛.高分辨率谐波恢复的互四阶累积量ESPRIT-SVD方法1[J].吉林大学学报(信息科学版),2002,20(1):30-32. 被引量:8
  • 2康晓涛,黄家才,石要武.高分辩率谐波恢复的互四阶累计量的Pisarenko方法[J].吉林大学学报(信息科学版),2002,20(2):27-30. 被引量:1
  • 3石要武,戴逸松,丁宏.有色噪声背景下正弦信号频率估计的互谱Pisarenko和MUSIC方法[J].电子学报,1996,24(10):46-50. 被引量:42
  • 4Schmidt R.Multiple emitter location and signal parameter estimation.RADC Spectrum Estimation Workship Record,Oct.1979,243-258.
  • 5Cadzow J A,et al.Singular value decomposition approach to time series modelling,IEEE.Proc.Apr.1983,130Pt.F(3):202-210.
  • 6Swami,Mendel J M.Cumulant-based approach to the harmonic retrieval and related problems.IEEE Trans.1991,ASSP-31:1099-1109.
  • 7Paya B A,Esat I I. Artificial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms as a Preprocessor. Mechanical Systems and Signal Processing. 1997,11(5):751-765
  • 8Jack L B,Nandi A K,Mccormick A C. Diagnosis of Rolling Element Bearing Faults Using Radial Basis Function Networks. Applied signal processing .1999,6:25-32
  • 9Huang N E ,et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis.Proc. R. Soc.Lond .A,1998,454:93-99
  • 10ZHANG X D. Time series analysis higher-order statistics methods.Beijing:Tsinghua University Press,1996(In Chinese)(张贤达.时间序列分析--高阶统计量方法北京:清华大学出版社,1996)

共引文献70

同被引文献32

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部