期刊文献+

蛇形进气道地面工作状态附面层抽吸试验研究 被引量:7

Experiment of Boundary Layer Suction in Serpentine Inlet Under Ground Running
下载PDF
导出
摘要 对一种蛇形进气道开展了地面工作状态下的抽吸试验研究,结果表明,在该状态下进气道出口截面的总压恢复系数较低、流场畸变较大。为此,本文采用附面层抽吸技术对其进行了地面抽吸状态下的流场控制试验研究。研究结果表明:(1)地面工作状态下,随着出口马赫数的增加,蛇形进气道出口截面的总压恢复系数不断下降,而稳态周向畸变指数、紊流度和综合畸变指数均上升,稳态径向畸变指数变化不大。本研究的蛇形进气道在出口马赫数为0.45时,总压恢复系数为0.90,综合畸变指数为13.85%,总压恢复较低,畸变较大,超出了一般航空发动机的承受范围。(2)与原型方案的地面抽吸试验结果相比,采用附面层抽吸技术后,进气道出口截面的总压恢复系数得到了提高。在出口马赫数为0.45,相对抽吸量为0.043时总压恢复系数提高了2.6%。 Experimental results of the air pumping of a serpentine inlet under ground running show that the total pressure recovery at the exit is low and the distortion at the exit is large. To solve this problem, a boundary layer suction test is carried out. The results prove that: (1) When the Maeh number of the flow at the exit increases, the total pressure recovery decreases, and the circular steady total pressure distortion coefficient ,turbulence intensity and synthesis distortion increase. When the serpentine inlet is running at the exit Mach number Mar=0. 45, the total pressure recovery coefficient equals 0. 90, and synthesis distortion equals 13.85%. So it can be seen that the distortion of the flow delivered by the inlet is too large to fit the engine. (2) Compared with the experimental results of the archetypal airpumping under ground running, using boundary layer suction technique can increase the total pressure recovery of the inlet. When Mar=0. 45 the relative suction flow rate equals 0. 043, the total pressure recovery increases by 2.6 %
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第1期30-36,共7页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 蛇形进气道 流场控制 地面工作状态 附面层抽吸试验 相对抽吸量 serpentine inlet flow control ground running boundary layer suction(BLS)experiment relative suction flow rate
  • 相关文献

参考文献7

二级参考文献27

  • 1翁培奋,郭荣伟.S弯进气道中静压场研究[J].航空动力学报,1993,8(1):21-23. 被引量:2
  • 2刘西鹏.双斜切S弯进气道地面工作状态涡流控制实验研究[M].南京:南京航空航天大学,1996..
  • 3Gridley M C, Walker S H. Inlet and nozzle technology for 21st century fighter aircraft[ R]. ASME Paper 96-GT-244,1996.
  • 4Michael J B, Zachary W. Flow separation within the engine inlet of an uninhabited combat air vehicle (UCAV)[J ]. Journal of Fluids Engineering, 2004,126:266 -272.
  • 5Reichert B A, Wendt B J. Improving diffusing S-duct performance by secondary flow control[R]. AIAA Paper 94-0365,1994.
  • 6Brown A C, Nawrocki H F, Paley P N. Subsonic diffuser designed integrally with vortex generators [ J ]. Journal of Aircraft, 1968, 15(3) : 221 - 229.
  • 7Anabtawi A J, Blackwelder R F, Lissaman P, et al. An experimental study of vortex generators in boundary layer ingesting diffusers with a centerline offset [ R ]. AIAA Paper 99-2110, 1999.
  • 8Raghunathan S, Watterson J K, Cooper R K, et al. Short wide angle diffuser with pulse jet control[ R]. AIAA Paper 99-0280, 1999.
  • 9Ball W H. Experimental investigation of the effects of wall suction and blowing on the performance of highly offset diffusers[R]. AIAA 83 1169,1983.
  • 10Rabe A, Anderson J. A facility for active flow control research in serpentine inlets [ R]. AIAA Paper 2002-0510,2002.

共引文献34

同被引文献47

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部