期刊文献+

基于灰度图像的自适应背景模型运动物体检测算法比较研究 被引量:5

Comparison of Moving Target Detection Algorithms using Adaptive Background Models in Grayscale Video Sequences
下载PDF
导出
摘要 介绍了在视觉监控领域经常用到的几种基于自适应背景模型的经典方法,如非参数模型、W4模型、单高斯模型和混合高斯模型等。通过实验,着重从系统的敏感性、实时性和运动对象分割的完整性等方面分析比较了上述方法在检测过程中的优势及不足之处,以期在工程实践中有一定的参考作用。 The paper introduces several classical methods for vision- surveillance using adaptive background models,such as the non-parametric model,W4 models, single C-aussian model and mixture Gaussian model and so on. Compares the proposed methods'predominance and deficiency on the performance of detection sensitivity, real -time of the system and the full of the segmentation of moving target by experiments, which probably has some benefits for the project.
出处 《现代电子技术》 2007年第5期123-127,共5页 Modern Electronics Technique
关键词 视觉监控 背景减除 混合高斯模型 运动物体检测 vision - surveillance background subtraction mixture Gaussian model moving target detection
  • 相关文献

参考文献17

  • 1周兵,李晓强,苏士美.实用户外视频监控异常检测策略[J].计算机工程,2003,29(16):16-17. 被引量:3
  • 2王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 3Elgammal A, Harwood D,Davis L. Non- parametric Model for Background Suhtraetion[C]. Proceedings of the 6th European Conference on Computer Vision, 2000 : 751 - 767.
  • 4Gaetan Baldini, Paola Campadelli, Dario Cozzi, et al. A Simple and Robust Method for Moving Target Tracking. Proceeding (370) Signal Processing, Pattern Recognition and A pplicalion, 2002.
  • 5Haritaoglu I, Harwood D,Davis I. S. W4: Real- time Surveillance of People and Their Activities. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (8).
  • 6Ismall Haritaoglu, Harwood D, Davis L S. W^4:A Real -time System for Detection and Tracking People[C]. International Conference on Face and Gesture Recognition, April 14 - 16,1998, Narn,Japan.
  • 7Wren C, Azarbayejani A, Darrell T,et al. Real - time Tracking of the Human Body. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780 - 785.
  • 8皮文凯,刘宏,查红彬.基于自适应背景模型的全方位视觉人体运动检测[J].北京大学学报(自然科学版),2004,40(3):458-464. 被引量:19
  • 9Grimson W E L,Stauffer C,Romano R,et al. Using Adaptive Tracking to Classify and Monitor Activities in a Site, In Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( Cat. No 98CB36231). IEEE. Comput. Soc. 1998.
  • 10Chris Stauffer,Grimson W E I.. Adaptive Background Mixture Models for Real - time Tracking. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149). IEEE. Comput. Soc. 1999,2.

二级参考文献139

  • 1刘彦宏,杜威,李华.足球视频序列中球员的分割与跟踪算法[J].系统仿真学报,2001,13(S2):90-93. 被引量:7
  • 2[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 3[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 4[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 5[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 6[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 7[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 8[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 9[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 10[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964

共引文献329

同被引文献63

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部