期刊文献+

含时滞的反应扩散Giu-Lawson方程波前解的存在性 被引量:2

Existence of Wave Front Solutions of the Delayed Reaction-diffustion Giu-Lawson Equations
下载PDF
导出
摘要 研究含时滞反应扩散Giu-Lawson方程的行波解.利用波前解的存在性理论,通过构造一个二阶时滞微分方程的上解和下解,得到当时滞较小时,微分方程的波前解存在,当时滞较大时,即使微分方程的行波解存在,也必将失去单调性的结论. In this paper, travelling~ wave solutions of the delayed reaction-diffusion Giu-Lawson equations are investigated. Using the existence theory of the wave front solution and constructing a upper solution and a lower solution of a second-order differential equation with delay, it is shown that wave front solutions of the Giu-Lawson equations exist when the delay is small, and travelling wave solutions of this differential equation will lose their monotonicity, even if they still exist, as the delay is further increased.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期18-21,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点基金 四川省科技厅应用基础基金资助项目
关键词 时滞 波前解 反应扩散 Giu-Lawson 方程 上解 下解 Delay Wave front solution Reaction-diffusion Giu-Lawson equation Upper solution Lower solution
  • 相关文献

参考文献7

  • 1Huang J,Zou X.Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays[J].J Math Anal Appl,2002,271:455-466.
  • 2杨治国,李树勇,王长有.含时滞和扩散的竞争型Lotka-Volterra系统波前解的存在性[J].四川师范大学学报(自然科学版),2005,28(5):521-525. 被引量:3
  • 3李树勇.一类时滞偏生态模型的振动性[J].四川师范大学学报(自然科学版),2002,25(6):595-597. 被引量:11
  • 4王长有,李树勇,杨治国.时滞反应扩散方程的周期解[J].安徽大学学报(自然科学版),2004,28(3):10-14. 被引量:6
  • 5Wu J,Zou X.Travelling wave fronts of reaction-diffusion systems with delay[J].J Dynam Diff Eqns,2001,13(3):651-687.
  • 6Gourley S A.Wave front solutions of a diffusive delay model for population of Daphnia Magna[J].Computers Math Applic,2001,42:1421-1430.
  • 7Kuang Y,Zhang B G,Zhao T.Qualitative analysis of a nonautonomous nonlinear delay-differential equation[J].Tohoku Math J,1991,43:509-528.

二级参考文献22

  • 1罗琦.一类偏泛函生态模型解的振动性[J].数学物理学报(A辑),1993,13(3):345-352. 被引量:9
  • 2何猛省.一类含时滞的反应扩散方程的周期解和概周期解[J].数学学报(中文版),1989,32(1):91-97. 被引量:23
  • 3Kuang Y. Delay Differential Equations with Applications in Population Dynamics[ M]. Boston: Academic Press, 1993.
  • 4Tang M M, Fife P C. Propagation fronts in competing species equations with diffusion[J]. Arch Rational Mech Anal,1978,73:69~ 77.
  • 5Gardner R A. Existence of traveling wave solutions of predator-prey systems via the connection index[ J]. SIAM J Appl Math, 1984,44: 56~79.
  • 6Huang J, Zou X. Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays[ J]. J Math Anal Appl,2002,271:455 ~ 466.
  • 7Wu J, Zou X. Traveling wave fronts of reaction-diffusion systems with delay[ J ]. J Dynam Diff Eqns, 2001,13 (3): 651 ~ 687.
  • 8C V Pao. Periodic solution of parabolic systems with nonlinear boundary condition[J].Math Anal Appl,1999,234: 695-716.
  • 9Wei Fang, Xin Lu. Asymptotic periodicity in Diffusive Logistic Equations with Discrete Delays[J]. Nonlinear Analysis Theory Methods & Applications,1996,26(2): 171-178.
  • 10Yong Kun Li,Yang Kuang.Periodic solutions of Periodic Delay Lotka-volterra Equations and systems[J]. J M A A,2001,255: 260-280.

共引文献15

同被引文献17

  • 1孙志忠,李雪玲.反应扩散方程的紧交替方向差分格式[J].计算数学,2005,27(2):209-224. 被引量:16
  • 2杨治国,李树勇,王长有.含时滞和扩散的竞争型Lotka-Volterra系统波前解的存在性[J].四川师范大学学报(自然科学版),2005,28(5):521-525. 被引量:3
  • 3李雪玲,孙志忠.二维变系数反应扩散方程的紧交替方向差分格式[J].高等学校计算数学学报,2006,28(1):83-95. 被引量:9
  • 4孙志忠.偏微分方程数值解法[M].北京:科学出版社,2004.
  • 5胡健伟,汤怀民.微分方程数值解法[M].北京:科学出版社,2000.
  • 6Sun zhi-zhong. An unconditionally stable and O(τ^2+ h^4 order L∞ convergent difference scheme for parabolic equations with variable coefficients [J]. Numerical Methods for Partial Differential Equations , 2001 (17) : 619-631.
  • 7Weizhong Dai and Raja Nassar. Compact ADI method for solving parabolic differential equations [J]. Numerical Methods for Partial Differential Equations, 2002 (18) : 129-142.
  • 8戴华.矩阵论[M].北京:科学出版社,2000.
  • 9May R M. Simple mathematical models with very com- plicated dynamics[J]. Nature, 1976,261 : 459-467.
  • 10Tang M M, Fife P C. Propagation fronts in competing species equations with diffusion [J]. Arch Rational Mech Anal, 1978,73 : 69-77.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部