摘要
研究含时滞反应扩散Giu-Lawson方程的行波解.利用波前解的存在性理论,通过构造一个二阶时滞微分方程的上解和下解,得到当时滞较小时,微分方程的波前解存在,当时滞较大时,即使微分方程的行波解存在,也必将失去单调性的结论.
In this paper, travelling~ wave solutions of the delayed reaction-diffusion Giu-Lawson equations are investigated. Using the existence theory of the wave front solution and constructing a upper solution and a lower solution of a second-order differential equation with delay, it is shown that wave front solutions of the Giu-Lawson equations exist when the delay is small, and travelling wave solutions of this differential equation will lose their monotonicity, even if they still exist, as the delay is further increased.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第1期18-21,共4页
Journal of Sichuan Normal University(Natural Science)
基金
四川省教育厅重点基金
四川省科技厅应用基础基金资助项目
关键词
时滞
波前解
反应扩散
Giu-Lawson
方程
上解
下解
Delay
Wave front solution
Reaction-diffusion Giu-Lawson equation
Upper solution
Lower solution