期刊文献+

Stabilization of nonlinear systems based on robust control Lyapunov function

Stabilization of nonlinear systems based on robust control Lyapunov function
下载PDF
导出
摘要 This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunnv function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method. This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty.Based on robust control l.yapunov function,a sufficient and necessary condition for a function to be a robust control Lyapunov function is given.From this condition,simply sufficient condition for the robust stabilization(robust practical stabilization)is deduced.Moreover,if the equilibrium of the closed-loop system is u-nique,the existence of such a robust control l.yapunov function will also imply robustly globally asymptotical stabilization.Then a continuous state feedback law can be constructed explicitly.The simulation shows the effectiveness of the method.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期130-133,共4页 哈尔滨工业大学学报(英文版)
基金 Sponsored by the Natural Science Foundation of Zhejiang Province in China(Grant No. Y105141).
关键词 structural uncertainty nonlinear systems robust control Lyapunov function robustly asymptotical stabilizatio 鲁棒控制 结构不稳定性 李雅普诺夫函数 非线性控制
  • 相关文献

参考文献10

  • 1Artstein Z.Stabilization with relaxed control[].Nonlinear Analysis.1983
  • 2Liberzon I),Sontag E I),Wnag Y.Universal construction of feedback laws achieving ISS and integral-ISS disturbance attenuation[].Systems and Control.2002
  • 3Lin Y,Sontag E I).A universal formula for stabilization with bounded control[].Systems and Control letters.1991
  • 4Sonlag E D.A Universal‘ construction of Artstein‘ s theorem on nonlinear stabilization[].Systems and Control Letters.1989
  • 5Sontag E I).A lyapunov-like characterization of asymptotic controllability[].SAM Journal Control and Optimization.1983
  • 6Kokotovic P,Arcak M.Conslruclive nonlinear t‘onlml: A historical perspective[].Aulomatica.2001
  • 7Freeman R A,Primbs J A.Control Lyapunov functions; New ideas from an old source[].IEEE Proc of Decision Control Conference.1996
  • 8freeman R A,Kokotovic P V.Robust Nonlinear Control Design[]..1996
  • 9Freeman R A,Kokolovir P V.Inverse optimality in robust stabilization[].SIAM Journal on Control.1996
  • 10Malisoff M,Sontag E D.Universal formulas for feedback stabilization with respect to Minkowski balls[].Systems and Control Letters.2000

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部