期刊文献+

一种新的混合变异粒子群算法 被引量:13

New Multi-Mutation Particle Swarm Optimization algorithm
下载PDF
导出
摘要 针对基本PSO算法存在易陷入局部最优点的缺点,提出了一种新型的PSO算法——混合变异粒子群算法。在每次迭代中,符合变异条件的粒子,以多种变异函数方式进行变异,而这些变异函数被赋予了一定概率,概率的划分取决于特定的优化问题。对几种典型函数的测试结果表明:在变异函数概率分配设置合适的情况下,混合变异粒子群算法增强了全局搜索能力,提高了搜索成功率,克服了基本PSO算法易于收敛到局部最优点的缺点,也明显优于单变异粒子群算法。 Aiming at the shortcoming of the standard PSO algorithm,that is easily plunging into local minimum,we propose a new Multi-Mutation Particle Swarm Optimization algorithm (MMPSO).In each iteration,the particles which are satisfied the mutation condition are mutated with many functions,and each function is endowed a probability.The probability distribution relies on the specific optimization problem.The experimental results show that the MMPSO enhances the global searching ability and the probability of successful searching,and overcomes the standard PSO's liability to converge to local optimum.It is also superior to Single Mutation Particle Swarm Optimization algorithm(SMPSO).
出处 《计算机工程与应用》 CSCD 北大核心 2007年第7期59-61,181,共4页 Computer Engineering and Applications
基金 浙江省自然科学基金(the Natural Science Foundation of Zhejiang Province of China under Grant No.602161)
关键词 粒子群 变异 优化 particle swarm mutation optimization
  • 相关文献

参考文献14

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks,Ⅳ,Perth,Australia,1995:1942-1948.
  • 2Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proc of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43.
  • 3Shi Y,Eberhart R C.A modified swarm optimizer[C].//IEEE World Congress on Computational Intelligence,1998:69-73.
  • 4Clerc M.The swarm and the queen:towards a deterministic and adaptive paiticle swarm optimization[C]//Proc of the Congress of Evolutionary Compution,1999:1951-1957.
  • 5Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization[C]//Proc of the Congress on Evolutionary Compulation,Seoul Korea,2001:101-106.
  • 6Angeline P J.Evolutionary optimization versus particle swarm optimization:philosophy and performance difference[C]//Evolutionary programming Ⅶ,1998:601-610.
  • 7Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimiser with breeding and subpopulation[C]//Proc of the Third Genetic and Evolutionary Compution Conference,San Francisco,USA,2001.
  • 8Natsuki H,Hitoshi I.Particle swarm optimization with Gassian mutation[C]//Proc of the Congress on Evolutionary Compution,2003:72-79.
  • 9van den Bergh F,Engelbrecht A P.Training product unit networks using cooperative particle swarm optimizers[C]//Proc of the Third Genetic and Evolutionary Computation Conference,San Francisco,USA,2001.
  • 10van den Bergh F,Engelbrecht A P.Effects of swarm size cooperative particle swarm optimizers[C]//Proc of the Third Genetic and Evolutionary Computation Conference,San Francisco,USA,2001.

二级参考文献1

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.

共引文献450

同被引文献136

引证文献13

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部