期刊文献+

基于Web日志挖掘的页面兴趣度方法的改进 被引量:5

下载PDF
导出
摘要 根据Web日志中的浏览时间、服务器发送字节数信息和统计所得的页面浏览频度计算页面兴趣度,并结合模糊理论,生成模糊关联规则,提出了一个预测用户浏览兴趣的方法。实验表明,该方法是可行的并且具有较好的效果。
作者 李珊 袁方
出处 《计算机时代》 2007年第3期29-31,共3页 Computer Era
  • 相关文献

参考文献6

二级参考文献27

  • 1(加)HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2[1]Weiyang Lin, Sergio A. alvarez, Carolina Ruiz, Efficient adaptive-Support Association Rule Mining for Recommender System. Data Mining and Knowledge Discovery,2002, (6) :83 ~ 105.
  • 3[2]Bettina Berendt, Using Site Semantics to Analyze, Visualize, and Support Navigation. Data Mining and Knowledge Discovery,2002, (6): 37 ~ 59.
  • 4[3]Fergus Toolan, Nicholas Kushmerick, Mining Web Logs for Personalized Site Maps. Smart Media Institute, Computer Science Department, University College Dublin.
  • 5[4]Robert Cooley, Bamshad Mobasher, Jaideep Srivastava. Data Preparation for Mining World Wide Web Browsing Pattems, Knowledge and Information Systems, 1999.1.
  • 6[9]Raymond Kosala, Hendrik Blockeel,Web Mining Research: A Survey, ACM SIGKDD,2000,7(2): 11 ~ 15.
  • 7Büchner AG, Mulvenna MD. Discovering Internet Marketing Intelligence through Online Analytical Web Usage Mining [ J]. ACM SIGMOD Record, 1998,27(4) :54 -61.
  • 8Adomavicius G, Tuzhilin A. User profiling in personalization applications through rule discovery and validation[ C]. In: Lee D, Schkolnick M, Provost F, et al, eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999,377-381.
  • 9Sarwar Badrul, George Karypis, Joseph Konstan, et al. Itembased Collaborative Filtering Recommendation Algorithms[Z].www10, 2001.
  • 10Sarwar Badrul, George Karypis, Joseph Konstan, et al. Analysis of recommendation algorithms for e-commerce [ C ]. Proceedings of EC'00, 2000.

共引文献173

同被引文献31

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部