期刊文献+

广义变分包含的近似点算法

Proximal Point Algorithm for Generalized Variational Inclusions
下载PDF
导出
摘要 引入并研究了一类新的关于H-单调算子的广义非线性变分包含,在Hilbert空间中利用H-单调算子的预解算子性质,建立了这类变分包含的一个新的寻求近似解的带误差的近似点算法,并证明了求近似解序列收敛于精确解.所得结果改进和推广了文献[1,2]的相关结果. A new class of generalized nonlinear variational inclusions involving H-monotone operator is introduced and studied. By using the properties of the resolvent operator associated with H-monotone operator in Hilbert spaces, a new proximal point algorithm with errors is suggested for finding approximate solutions which converge strongly to the exact solution of generalized variational inclusions. The results presented in the paper can extend and improve many known results of[1,2].
出处 《甘肃科学学报》 2007年第1期15-18,共4页 Journal of Gansu Sciences
基金 国家自然科学基金资助项目(10271093)
关键词 广义非线性变分包含 H-单调算子 带误差的近似点算法 收敛性 generalized nonlinear variational inclusions H-monotone operator proximal point algorithmwith errors convergence
  • 相关文献

参考文献3

二级参考文献21

  • 1刘立山.Banach空间非线性混合型微分-积分方程的解[J].数学学报(中文版),1995,38(6):721-731. 被引量:44
  • 2Ding X.P., Luo C.L.. Perturbed proximal point algorithms for generalized quasi-variational-like inclusions[J].J.Comput.Appl.Math. 2000, 113:153-165.
  • 3Huang N.J..Generalized nonlinear variational inclusions with noncompact valued mapping[J].Appl.Math.Lett. 1996,9(3):25-29.
  • 4Huang N.J..On the generalized implicit quasivariationalinequalities[J].J.Math.Anal.Appl. 1997, 216:197-210.
  • 5Huang N.J.. A new completely general class of variational inclusions with noncompact valued mappings[J].Computers Math. Appl.1998,35(10):9-14.
  • 6Nadler S.B.. Multivalued contraction mappings[J].Pacific J. Math. 1969,30:475-488.
  • 7Huang N.J.,Fang Y.P.. A new class of general variational inclusions involving maximal η-monotone mappings[J].Publ.Math.Debrecen 2003,62:83-98.
  • 8Lee C.H.,Ansari Q.H.,Yao J.C..A perturbed algorithm for strongly nonlinear variational-like inclusions[J].Bull. Austral. Math. Soc. 2000,62:417-426.
  • 9CHANG S S, CHOY J, ZHOU H Y. Iteratitive Methods for Nonlinear Operator Equations in Banach Spaces [ M ].New York: Nova Science Publishers, Inc Huntington,2002.
  • 10OSILIKE M O. Stability of the Mean and Ishikawa interation procedures for ψ-strong pseudocontractions and nonlinear equations of the ψ-strongly accretive type [ J ]. J Math Anal Appl, 1998,227:319-334.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部