期刊文献+

Penalty Algorithms in Hilbert Spaces

Penalty Algorithms in Hilbert Spaces
原文传递
导出
摘要 We analyze the classical penalty algorithm for nonlinear programming in Hilbert spaces and obtain global convergence results, as well as asymptotic superlinear convergence order. These convergence results generalize similar results obtained for finite-dimensional problems. Moreover, the nature of the algorithms allows us to solve the unconstrained subproblems in finite-dimensional spaces. We analyze the classical penalty algorithm for nonlinear programming in Hilbert spaces and obtain global convergence results, as well as asymptotic superlinear convergence order. These convergence results generalize similar results obtained for finite-dimensional problems. Moreover, the nature of the algorithms allows us to solve the unconstrained subproblems in finite-dimensional spaces.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第2期229-236,共8页 数学学报(英文版)
关键词 penalty methods infinite dimensional optimization penalty methods, infinite dimensional optimization
  • 相关文献

参考文献6

  • 1Luenberger, D. G.: Optimization by Vector Space Methods, Wiley, 1969
  • 2Dussault, J. P.: Numerical stability and efficiency of penalty algorithms. SIAM Journal on Numerical Analysis, 32(1), 296-317 (1995)
  • 3Gould N. I. M.: On the convergence of a sequential penalty function method for constrained minimization.SIAM Journal on Numerical Analysis, 26, 107-108 (1989)
  • 4Berger, M. S.: Nonlinearity and Functional Analysis, Academic Press, 1977
  • 5Polyak, B. T., Tretyakov, N. V.: The method of penalty estimates for conditional extremum problems, Zh.vychil. Mat. Mat. Fiz., 1973
  • 6Dennis, J. E., Schnabel, R. B.: Numerical methods for nonlinear equations and unconstrained optimization, Prentice Hall, 1983

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部