期刊文献+

基于MCSA和SVM的异步电机转子故障诊断 被引量:25

Fault diagnosis for rotor of induction machine based on MCSA and SVM
下载PDF
导出
摘要 本文提出一种基于电机电流信号频谱分析和支持向量机的异步电机转子故障诊断方法,该方法可以利用支持向量机对电机电流频谱信号的特征信息和故障模式进行关联。对电机定子电流采样后,其信号经FFT变换后提取故障特征量作为支持向量机的输入,基于1对1算法构造了感应电机转子故障多类分类器。实验结果表明,该方法具有很好的分类和泛化能力,可以提高电机故障诊断的准确性。 A fault diagnosis method for induction machine is presented, which is based on motor current signal analysis (MCSA) and support vector machine (SVM). This method correlates the motor current spectrum characteristic and the fault mode using SVM. The stator current is sampled, the fault spectrum is extracted from the sampling data through FFT, and the spectrum data are used as the input of the SVM. A multi-class fault classifier is constructed based on one to one strategy to identify different rotor faults. Experiment results show that this method has good classification and generalization ability, and improves the accuracy in rotor fault diagnosis of induction machine.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第2期252-257,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(50477010) 福建省青年科技术人才创新基金(2004J032)资助项目
关键词 异步电机 故障诊断 支持向量分类机 电机信号频谱分析 induction machine fault diagnosis support vector classification motor current signal analysis
  • 相关文献

参考文献9

  • 1NANDI S,TOLIYIAT H A.Condition monitoring and fault diagnosis of electrical machines-a review[A].Conference Record of IEEE-IAS'99[C].Phoenix,AZ,1999:197-204.
  • 2AWADALLAH M A,MORCOS M M.Application of AI tools in fault diagnosis of electrical machines and drives-an review[J].IEEE Trans.on Energy Conversion,2003,18(2):245-251.
  • 3FILIPPETTI F,FRANCESCHINI G,TASSONI C.Neural network aided on-line diagnostics of induction motor rotor faults[J].IEEE Trans.On Industry Application,1995,31(4):892-899.
  • 4VAPNIK V N.The nature of statistical learning theory[M].2nd ed.New York:Springer,2000.
  • 5曹志彤,陈宏平,何国光.电机故障诊断支持向量机[J].仪器仪表学报,2004,25(6):738-741. 被引量:17
  • 6HSU CH W,LIN CH J.A comparison of methods for multi-class support vector machines[J].IEEE Trans.on Neural Networks,2002,13(2):415-425.
  • 7MAYORAZ,E,ALPAYDIN E.Support vector machines for multi-class classification[J],Int.Worksho Pon Artificial Neural Networks,1999,2(1):833-842.
  • 8方瑞明,马宏忠.基于最小二乘支持矢量机的异步电机转子故障诊断研究[J].电工技术学报,2006,21(5):92-98. 被引量:17
  • 9FILIPPETTI F,FRANCESCHINI G,TASSONI C,et al.AI techniques in induction machines diagnosis including the speed ripple effect[J].IEEE Trans.on Industry Applications,1998,34(1):98-108.

二级参考文献14

共引文献31

同被引文献211

引证文献25

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部