期刊文献+

纽立方体网络的容错泛圈性

Fault-tolerant Pancyclicity of Twisted Cubes
下载PDF
导出
摘要 互连网络包含所有可能长度的圈是一个重要的拓扑性质。纽立方体网络TOn是超立方体网络Qn的一种变型,其中n≥3是奇数。Chang等人[Information Science,113(1999),147-167]证明了TOn中包含任意长度为l的圈,其中4≤l≤2n。如果TOn中的故障点数和故障边数之和不超过(n-2),Huang等人[J.Parallel andDistributed Computing,62(2002),591-640]证明了:TQn中包含长度为2n-fv的圈,其中fv是故障点数。这篇文章改进这些结果为:TQn中包含任意长度为l的圈,其中4≤l≤2n-fv。 Containing cycles of all possible lengths in an interconnection network is an important topological property. The twisted cube TQn is a variant of the hypercube Qn, where n is an odd larger than one. Chang et al [Information Science, 113(1999), 147-1673 proved that TQn contains all cycles of length from 4 to 2n. Huang et al. [J. Parallel and Distributed Computing, 62(2002), 591-6403 proved that TQn contains a cycle of length 2^n-fv if the sum of faulty vertices and faulty edges is not more than(n-2), where fv is the number of faultyvertices. This note improves these results as that TQn contains all cycles of length from 4 to 2^n-fv. This result is optimal.
出处 《运筹与管理》 CSCD 2007年第1期52-57,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目
关键词 应用数学 图论 网络 容错泛圈 纽立方体网络 applied mathematics graph theory networks fault-tolerant pancyclicity twisted cubes.
  • 相关文献

参考文献9

  • 1Hibers P A J,Koopman M R J,J L A.Van de snepscheut,The twisted cube[A].in"parallel architectures and languages europe,"lecture notes in computer science[C].Berlin/New York,springer-verlag.1987.152-159.
  • 2Abraham S,Padmanabhan K,The twisted cube topology for multiprocessors:a study in network asymmetry[J].Parallel J Distrib.Comput,1991,13.104-110.
  • 3Abuelrub E,Bettayeb S.Embedding of complete binary trees in twisted hypercubes[A].In Pro-ceedings of International Conference on Computer Applications in Design,Simulation,and Anal ysis[C],1993.1-4.
  • 4Chang C P,Wang J N,Hsu L H.Topological properties of twisted cube[J].Information Science,1999,113:147-167.
  • 5Xu J M.Toplogical structure and analysis of interconnection networks[M].Dordrecht/Boston/London,Kluwer Academic Publishers:2001.
  • 6Van Blanken E,Van den Heuvel J,Veldman H J.Pancyclicity of hamiltonian line graphs[J].Discrete Math,1995,138:379-385.
  • 7Bondy J A,Pancyclic graphs[J].Combin.Theory,Ser.B,1971,11:80-84
  • 8Randerath B,Schiermeyer I,Tewes M,Volkmann L,Vertex pancyclic graphs[J].Discrete Appl.Math,2002,120:219-237.
  • 9Huang W T,Tan J J M,Huang C N,Hsu L H.Fault-tolerant hamiltonicity of twisted cubes[J].Parallel and Distributed Computing,2002,62:591-640.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部