期刊文献+

二维Ising和XY模型的老化现象研究 被引量:2

Study for aging phenomena of two-dimensional Ising and XY model
下载PDF
导出
摘要 以动力学蒙特卡罗(Monte Carlo)模拟方法对二维伊辛(Ising)模型和二维经典XY模型展开了数值研究.从一个高温无序相淬火到临界点Tc,采用热浴迭代方法,模拟计算双时自关联函数A(t,t′=0)与t的函数标度关系,以及A(t,t′)与t/t′之间的函数关系,得到了相关临界指数.研究其中所遵循的规律,证实对二维XY模型的标度行为应该进行对数修正.预测了老化(aging)现象的普适性及其标度关系,与重整化群理论的结果相吻合. With dynamic Monte Carlo simulations, aging phenomena of two-dimensional Ising model and dynamic XY model were studied numerically. Systems were quenched to their critical point from a disordered initial state. The autocorrelation function was calculated by heat-bath algorithm. Critical exponents were also calculated. It was confirmed that for the 2D XY model, there is a logarithmic correction to scaling. The universality proposal and their scale relation in aging phenomena were predicted. The scale relation agreed with renormalization group calculations.
作者 雷晓蔚
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2007年第2期168-171,180,共5页 Journal of Zhejiang University(Science Edition)
基金 重庆市教育委员会科学技术研究资助项目(KJ061208)
关键词 蒙特卡罗 热浴迭代 自关联函数 老化现象 标度关系 Monte Carlo heat-bath autocorrelation function aging phenomena scale relation
  • 相关文献

参考文献20

  • 1LI Z B, SCHuLKE L, ZHENG B. Dynamic Monte Carlo measurement of critcial exponents[J]. Phys Rev Lett, 1995, 74(17): 3396-3398.
  • 2ZHENG B. Generalized dynamic scaling for critical relaxations[J]. Phys Rev Lett, 1996,77(4) : 679-682.
  • 3ZHENG B. Monte Carlo simulations of short-time critical dynamics[J]. Int J Mad Phys B, 1998, 12(14):1419-1484.
  • 4JSATER A, MAINVILLE J, SCHULKE L, et al.Short-time critical dynamics of three-dimensional Ising model[J]. Nucl Phys B, 1999, 32: 1395-1406.
  • 5SCHULKE L, ZHENG B. The short-time dynamics of the critical Potts model[J]. Phys Rev Lett A, 1995,204 : 295-304.
  • 6ZHENG B, SCHULZ M, TRIMPER S. Deterministic equations of motion and dynamic critical phenomena[J]. Phys Rev Lett, 1999, 82(9) : 1891-1894.
  • 7YING H P, ZHENG B, YU Y, et al. Correction to scaling for the two-dimensional dynamic XY model[J]. Phys Rev E, 2001, 63(3):R35101(1-4).
  • 8ZHENG B, REN F, REN H. Correction to scaling in two-dimensional dynamic XY and fully frustrated XY models[J]. Phys Rev E, 2003, 68(4): 046120(1-9).
  • 9GODReCHE C, LUCK J M. Nonequilibrium critical dynamics of ferromagnetic spin systems[J]. J Phys:Condens Matter, 2002, 14: 1589-1599.
  • 10CUGLIANDOLO L F. In Slow Relaxation and Non Equilibrium Dynamics in Condensed Matter[M]. Berlin: Spring, 2003.

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部