摘要
该文在较宽松的条件下,利用不动点理论,得到了Banach空间中二阶非线性脉冲积分-微分方程初值问题解的存在性定理.作者去掉了脉冲项的紧性和增长性限制,因而本质上改进和推广了某些现有的结果.
In this paper, by using fixed point theory, the existence of solutions of initial value problems for second order nonlinear impulsive integro-differential equations in Banach spaces is investigated under some relaxed conditions. The compactness and growth restrictions on the impulsive terms have been dropped and thus the results substantially improve and generalize the specific ones.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2007年第1期138-145,共8页
Acta Mathematica Scientia
基金
安徽省教育厅自然科学资金(2005KJ221)资助
关键词
BANACH空间
脉冲积分-微分方程
初值问题
非紧性测度.
Banach space
Impulsive integro-differential equation
Initial value problem
Measure of noncompactness.