期刊文献+

一类基于图上随机游动的密钥共享体制 被引量:3

原文传递
导出
摘要 通过图上的随机游动构造了一个具有随机重构算法的密钥共享体制,该重构算法的空间复杂度由一般的多项式级别降低到对数级别,同时保持时间复杂度没有增加.另外,由该密钥共享体制可以诱导出一类具有特殊性质的线性码,进而构造出新的密钥共享体制以实现较好的存取结构.基于这个密钥共享体制可以设计一个具体的具有统计安全性的安全多方计算协议,而这一方面已知的例子并不多.
出处 《中国科学(E辑)》 CSCD 北大核心 2007年第2期199-208,共10页 Science in China(Series E)
基金 国家重点基础研究发展规划(批准号:2004CB318000) 国家自然科学基金(批准号:90304012 90204016)资助项目
  • 相关文献

参考文献17

  • 1Blackley G R. Safeguarding cryptographic keys, In: Proc of the 1979 AFIPS National Computer Conference, NewYork:AFS Press, 1979, 48:313-317
  • 2Shamir A, How to share a secret. Comm ACM, 1979, 22: 612-613
  • 3Blundo C, De Santis A, Stinson D R, et al, Graph decompositions and secret sharing schemes, J Cryptology, 1995, 8: 39-64
  • 4Sun H M, Shieh S P, An efficient construction of perfect secret sharing schemes for graph-based access structures, In"Computers and Mathematics with Applictions 31, 1996.129- 135
  • 5Beimel A, Chor B, Universally ideal secret sharing schemes. IEEE Trans on Info Theory, 1994, 40(3): 786-794
  • 6Karchmer M, Wigderson A. On span programs. In: Proc 8th Ann Syrup Structure in complexity Theory, California; IEEE,1993. 102-111
  • 7Diug C, Yuan J. Covering and secret sharing with linear codes. In: Discrete Mathematics and Theoretical Computer Science.LNCS vol 2731, Heidelberg; Springer -Verlag, 2003.11 - 25
  • 8Cramer R, Damgard I, Maurer U. General secure multi-party computation from any linear secret-sharing scheme. In: Proc EUROCRYPT '00. LNCS 1807, Heidelberg: Springer-Verlag, 316-334
  • 9Goldreich O, Micali S, Wigderson A. How to play ANY mental game. In: Proc of the Nineteenth Annual ACM Conference on Theory of Computing. New York: IEEE, 1987. 218-229
  • 10Hirt M, Maurer U. Player simulation and general adversary structures in perfect multi-party computation, J Cryptology,2000, 13(1): 31-60

同被引文献23

  • 1Shamir A.How to Share a Secret[J].Communications of Commu-nications of the ACM,1979,22(11):612-613.
  • 2Blakley G.Safeguarding Cryptographic Keys[C]//Proceedings ofNational Computer Conference.New York,USA:[s.n.],1979:313-317.
  • 3Stinson D R.An Explication of Secret Sharing Schemes[J].Designs,Codes and Cryptography,1992,2(4):357-390.
  • 4Ding Cunsheng.The Weight Distribution of Some IrreducibleCyclic Codes[J].IEEE Transactions on Information Theroy,2009,55(3):955-960.
  • 5Jackson W,Martin K M.Perfect Secret Sharing Schemes on FiveParticipants[J].Designs,Codes and Cryptography,1996,9(3):267-286.
  • 6Van Dijk M.On the Informationg Rate of Perfect Secret SharingSchemes[J].Designs Codes Cryptography,1995,6(2):143-169.
  • 7Capocelli R M,De Santis A,Gargano L,et al.On the Size ofShares for Secret Sharing Schemes[J].Cryptology,1993,6(3):157-167.
  • 8Blundo C,De Santis A,Stinson D R,et al.Graph Decompositionsand Secret Sharing Schemes[J].Cryptology,1995,8(1):39-64.
  • 9Dijk V. On the information rate of perfect secret sharing schemes[J].{H}Designs Codes and Crytography,1995,(2):143-169.
  • 10Gharahi M,Dehkordi M H. The complexity of the graph access structures on six participants[J].Design Codes and Cryptography,2013,(2):169-173.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部