摘要
[b,T]表示由Lipschitz函数b与广义Calderon-Zygmund算子T生成的交换子.本文研究了[b,T]在经典Hardy空间和Herz型Hardy空间上的有界性,并且在临界点情形证明了该交换子是从Hardy空间到弱Lebesgue空间以及Herz型Hardy到弱Herz空间有界的.
[b, T] denotes the commutator of generalized Calderón-Zygmund operators T with Lipschitz function b. This paper deals with that [b, T] is bounded in classical Hardy spaces and Herz type Hardy spaces, and proves that [b, T] is bounded from Hardy spaces to weak Lebesgue spaces and from Herz type Hardy spaces to weak Herz spaces on critical point.