摘要
曲波变换是在小波变换的基础上发展起来的一种新方法,能够有效地对具有复杂纹理的图像进行去噪。在分析独立分量分析(ICA)的基本模型和方法的基础上,提出利用快速离散曲波变换和FastICA算法进行有噪图像盲分离。仿真结果表明,对于含有加性观测噪声的混合图像,该方法能够有效地进行去噪分离。
The eurvelet transform is a new method developed from the wavelet transform, and it has good performance in denoising sophisticated image. This paper, based on the basic model and methods of Independent Component Analysis (ICA), proposed a new blind separation method of noisy image using Fast Discrete Curvelet Transforms (FDCT) via Unequally-Spaced Fast Fourier Transforms (USFFT) and the algorithm of Fast ICA. The simulation results show that for the mixed images with additive white Gaussian noise this method has effective performance in mixed image de - noising and separation.
出处
《计算机应用》
CSCD
北大核心
2007年第2期438-441,共4页
journal of Computer Applications
关键词
独立分量分析
FASTICA算法
快速离散曲波变换
图像盲分离
Independent Component Analysis (ICA)
algorithm of Fast ICA
Fast Discrete Curvelet Transforms (FDCT)
imageblind separation