期刊文献+

隐马尔科夫模型在智能学习系统中的应用 被引量:9

Application of HMM in intelligent learning system
下载PDF
导出
摘要 智能学习系统中,用户希望在学习的过程中系统能够根据知识点之间的内在关系自动给出学习引导。要实现智能引导的功能,就要找到所有知识点之间的内在关联。使用大量学习记录作为训练集,建立隐马尔科夫模型,并且利用该模型得到最优观察序列,实现了知识点学习的智能引导。 It is expected that intelligent learning system can automatically provide learning guidance for the learner in his learning process based on the patent relationship among the knowledges.To achieve this,it is necessary to find out the patent relationship between knowledges.This paper uses massive learning record as the training data,builds up HMM model and realizes the intelligent guidance.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第6期178-180,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60273054) 高等院校博士学科点专项科研基金(the China Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20050270004) 上海市教委科研基金(No.05DZ06) 。
关键词 智能学习 HMM 知识迁移 Baum-Welch算法 inteUigent learning HMM knowledge transfer Baum-Welch
  • 相关文献

参考文献2

二级参考文献12

  • 1王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 2王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 3王双成,苑森淼.具有丢失数据的可分解马尔可夫网络结构学习[J].计算机学报,2004,27(9):1221-1228. 被引量:19
  • 4Elidan G, Friedman N. The information bottleneck EM algorithm[C]. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence (UAI), 2003.
  • 5Elidan G, Lotner N, Friedman N et al. Discovering hidden variables: a structure-based approach[M]. In Advances in Neural Information Processing Systems 13, MIT Press, 2000:479-485.
  • 6Elidan G, Friedman G. Learning the dimensionality of hidden variables[C]. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, 2001:144-151.
  • 7Boyen X, Friedman N, Koller D. Discovering the hidden structure of complex dynamic systems[C]. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, 1999:91-100.
  • 8Lam W, Bacchus F. Learning Bayesian belief networks: an approach based on the MDL principle[J]. Computational Intelligence, 1994,10(4):269-293.
  • 9Tarjan R, Yannakakis M. Simple linear-time algorithms to test chordality of graphs, test acyclicicty of hypergraphs and selectively reduce acyclic hypergraphs[J]. SIAM Journal on Computing, 1984,13(3):566-579.
  • 10Heckerman D. Bayesian networks for data mining[R]. Technical Report MSR-TR-97-02, Microsoft Research, 1997.

共引文献2

同被引文献75

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部