期刊文献+

入侵检测中的OCSVM方法综述 被引量:1

Survey on OCSVM Approaches for Intrusion Detection
下载PDF
导出
摘要 通常,在入侵检测的研究中把入侵行为看成是一个二分类问题,即正常和异常,这就需要一个被完全标记为正常和异常的训练数据集。而在实际应用中,很难找到这样的数据集,并且对于一些新的没有标记过的入侵行为,传统的入侵检测方法不能检测出来。而基于OCSVM的入侵检测不需要任何标记数据,并且能够从未标记的数据集中发现异常。 Generally, intrusion behavior is regarded as a two-class problem in the research on intrusion detection, which includes normal and abnormal. It needs a training set of pure data which is labeled as normal and abnormal. But in practice, it is hard to find this data set, and traditional intrusion detection approaches can not detect some new intrusion behaviors which have not been labeled before. However, OCSVM-based intrusion detection approaches do not need any labeled data set, and attempt to find anomaly buried in the data.
出处 《计算机与现代化》 2007年第3期40-44,共5页 Computer and Modernization
关键词 入侵检测 机器学习 one—class问题 数据挖掘 计算机安全 非监督学习 intrusion detection machine learning one-class SVM problem data mining computer security unsupervised learning
  • 相关文献

参考文献16

  • 1Lee W, Stolfo S J, Mok K W. A data mining framework for buildingintrusion detection models[ A]. Proceedings of the 1999 IEEE Symposium on Security and Privacy[ C ]. 1999.
  • 2Forrest S, Perrelason A S, Allen L, Cherukur R. Self Nonself discrimination in a computer [ A ]. Rushby J,Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy[ C]. 1994. 202-212.
  • 3Ghosh A K, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior[ A ].Debar H, Wu SF, eds. Recent Advances in Intrusion Detection ( RAID 2000 ) [ C ]. Toulouse: Spinger-Verlag,2000, 93-109.
  • 4饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803. 被引量:135
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 6Portnoy L, Eskin E, Stolfo S. Intrusion detection with unlabeled data using clustering [ A ]. Proceedings of ACM CSS Workshop on Data Mining Applied to Security [ C ].2001.
  • 7Javitz H S, Vadles A. The NIDES statistical component: Description and justi_cation [ R ]. Technical report, SRI International, 1993.
  • 8Denning D. An intrusion detection model[ J ]. IEEE Transactions on Software Engineering, 1987,13 (2) :222-232.
  • 9Information and Computer Science, University of California. The third international knowledge discovery and data mining tools competition dataset KDD99-Cup [ DB/OL ].http://kdd, ics. uci. edu/databases/kddcup99/kddcup99.html, 1999-10-28.
  • 10Lee W, Stolfo S J. A data mining framework for building intrusion detection model [ A ]. Gong L, Reiter M K, eds.Proceedings of the 1999 IEEE Symposium on Security and Privacy[ C ]. Oakland, CA: IEEE Computer Society Press,1999. 120-132.

二级参考文献22

  • 1Vapnik V.. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 2Vapnik V.. Statistical Learning Theory. Addison-Wiley, 1998
  • 3G. Ratsch. Robust boosting via convex optimization[Ph D dissertation]. University of Potsdam, 2001
  • 4Tax D., Duin R.. Data domain description using support vectors. In: Proceedings of the European Symposium on Artificial Neural Networks, 1999, 251~256
  • 5Scholkopf B., Platt J., Shawe-Taylor J., Smola A.J., Williamson R.C.. Estimating the support of a high-dimensional distribution. Neural Computation, 2002, 13(7): 1443~1471
  • 6Ratsch G., Mika S., Scholkopf B., Müller K.R.. Constructing boosting algorithms from SVMs: An application to one-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002, 9(4): 1184~1199
  • 7Scholkopf B., Smola A., Williamson R.C., Bartlett P.L.. New support vector algorithms. Neural Computation, 2000, 12:1207~1245
  • 8Valiant L.G.. A theory of the learnable. Communications of the ACM, 1984, 27(11): 1134-1142
  • 9Mangasarian O.L.. Arbitrary-norm separating plane. Operation Research Letters,1999, 24(1):15~23
  • 10Cristianini N., Schawe-Taylor J.. An Introduction to Support Vector Machines. Cambridge: Cambridge University Press, 2000

共引文献2406

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部