期刊文献+

独立成份分析方法在股票分析中的应用 被引量:5

Application of independent component analysis to analysis of stock market
下载PDF
导出
摘要 为了克服传统的股票分析方法的缺点,将独立成份分析方法用于分析影响股票走势和收益的因素。通过对几个大公司的历年K线数据的深入分析,该方法在一定程度上揭示了影响股票走势和收益的深层次的原因。这对建立和谐的金融体系、促进社会经济的良性发展以及创建和谐的社会都具有一定的现实意义。同时也表明了该方法还具有简单易行、容易理解、结果精确的特点。 In order to overcome the shortcoming ofthe traditional methods, independent component analysis (ICA) is used to analyse the factor that has influence on the trend of stocks and the returns of stocks. By analyzing the trend of the day-K-lines of the historical datum, this method shows the factor that influences the stock market and the returns. To some extent, it is important for constructing a harmonious society. At the same time, it is easy to understand and the result is precise.
作者 陈玉山 席斌
出处 《计算机工程与设计》 CSCD 北大核心 2007年第6期1473-1476,共4页 Computer Engineering and Design
关键词 主成份分析:独立成份分析 盲源信号分离 股票收益 PCA ICA BSS entropy retums of stocks
  • 相关文献

参考文献11

  • 1吴国正,唐劲松,章林柯.自适应盲信号与图像处理[M].北京:电子工业出版社,2005.
  • 2杨福生,洪波.独立成份分析的原理与应用[M].北京:清华大学出版社,2006.
  • 3周卫东,赵浩,彭玉华.独立分量分析在有噪图像分离中的应用[J].中国图象图形学报(A辑),2005,10(2):241-244. 被引量:10
  • 4Svensen M,Kruggle F,Benali H.ICA of fMRI group study data[J].NeuroImage,2000,11:24-35.
  • 5郭瑞,宋海娜,匡纲要.基于定点ICA算法的人脸识别方法[J].计算机工程,2004,30(9):159-161. 被引量:5
  • 6Erkki Ojia.Independent component analysis for financial time series[C].Adaptive Systems for Signal Processing,Communications,and Control Symposium,AS-SPCC,IEEE,2000.111-116.
  • 7杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 8Bach FR,Jordan MI.Kernel independent component analysis[J].Journal of Machine Learning Research,2002,(3):1-48.
  • 9Hyvarinen A,Oja E.Independent component analysis:Algorithms and applications[J].Neural Networks,2000,13:411-430.
  • 10Aapo Hyvarinen,Juha Karhunen,Erkki Oja.Independent component analysis[M].New York:John Wiley and Sons Inc,2001.

二级参考文献30

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3Comon P. Independent component analysis, A new concept.? [ J ].Signal Processing, 1994,36 ( 3 ) :287 ~ 314.
  • 4Paraschiv-Ionescu A, Jutten C. Source separation in strong noisy mixtures: a study of wavelet de-noising pre-processing [ A ]. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ASSP) [C], Orlando, Florida, USA. 2002,2:1681 ~ 1684.
  • 5Hyvarinen A. Fast ICA for noisy data using Gaussian moments [ A ].In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems(ISCAS) [ C ], Orlando, Florida, USA, 1999,5:57 ~61.
  • 6Paraschiv-Ionescu A, Jutten C, Aminian K, et al. Wavelet denoising for highly noisy source separation [ A ]. In: IEEE International Conference on Acoustics, Speech and Signal Processing(ASSP) [C],Orlando, Florida, USA, 2002,1:201 ~204.
  • 7Heinz Mathisa, Marcel Joho. Blind signal separation in noisy environments using a three-step quantizer [ J ]. Neurocomputing,2002,49(1-4): 61 ~78.
  • 8Sergiy Vorobyov, Andrzej Cichocki. Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis [ J ]. Biological Cybernetics, 2002,86(4) :293 ~303.
  • 9Ddonoho D I. De-noising by soft-thresholding[ J ]. IEEE Transactions on Information Theory, 1995,41(3) :613 ~626.
  • 10Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [ J ]. IEEE Transactions on Neural Networks,1999,10 ( 3 ) :626 ~ 634.

共引文献167

同被引文献40

  • 1魏雄.决策树算法在股票分析与预测中的应用[J].电脑知识与技术,2007(5):764-765. 被引量:3
  • 2高颖,李月,杨宝俊.变步长自适应盲源分离算法综述[J].计算机工程与应用,2007,43(19):75-79. 被引量:10
  • 3Dunham MH.数据挖掘教程[M].郭崇慧,田凤占,靳晓明译.北京:清华大学出版社,2005.
  • 4Han J, Kamber M. Data mining: concepts and techniques, second edition[ M ]. San Francisco: Morgan Kaufmann, 2006.
  • 5Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration[ J]. Data Mining and Knowledge Discovery, 2003, 7(4) : 349-371.
  • 6Liao T W. Clustering of time series data: a survey[ J]. Pattern Recognition, 2005, 38: 1857-1874.
  • 7Theodoridis S, Koutroumbas K. Pattern recognition[ M ]. Third Edition. New York: Academic Press, 2006.
  • 8Wilpon J G, Rabiner L R. Modified k-means clustering algorithm for use in isolated word recognition[ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(3): 587-594.
  • 9Shaw C T, King G P. Using cluster analysis to classify time series[J]. Physica D, 1992, 58: 288-298.
  • 10Goutte C, Toft P, Rostrup E. On clustering FMRI time series[J]. Neuroimage, 1999, 9(3) : 298-310.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部