期刊文献+

广义Camassa-Holm方程的显式孤立子解 被引量:6

Explicit Soliton Solutions of Generalized Camassa-Holm Equation
下载PDF
导出
摘要 研究广义Camassa-Holm方程的显式孤立子解,在研究中,首先建立一个与该方程相对应的平面系统,然后画出平面系统的分支相图,最后,通过相图中某些特殊的同宿轨道获得显式孤立子解. In this paper, explicit soliton solutions of generalized Camassa-Holm equation is studied. First, a planar system corresponding to the generalized Camassa-Hohm equation is established. Secondly, the bifurcation phase portraits of the planar system are given. Finally, via some special homoclinic orbits, the explicit soliton solutions are obtained.
出处 《云南民族大学学报(自然科学版)》 CAS 2007年第2期89-94,共6页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金资助项目(10571062)
关键词 显式孤立子解 分支相图 广义Camassa—Holm方程 explicit soliton solutions bifurcation phase portraits generalized Camassa-Holm equation
  • 相关文献

参考文献12

  • 1LIU Z R,QIAN T F.Peakons and Their Bifurcation in a Generalized Camassa-Holm Equation[J].International Journal of Bifurcation and Choas,2001,11 (3):781-792.
  • 2CAMASSA R,HOLM D D.An Integrable Shallow Water Equation with Peaked Solitons[J].Phys Rev Lett,1993,71 (11):1661-1664.
  • 3CONSTANTIN A,STRAUSS W A.Stability of the Camassa-Holm Solitons[J].J Nonlinear Sci,2002,12(4):415 -422.
  • 4刘正荣.关于Camassa-Holm方程尖孤立子解的扩展(英文)[J].云南民族大学学报(自然科学版),2004,13(1):3-9. 被引量:8
  • 5唐民刚,谢绍龙.广义CH方程的周期波解及数值模拟[J].云南民族大学学报(自然科学版),2007,16(1):13-17. 被引量:3
  • 6LIU Z R,LONG Y.Compacton-like wave and kink-like wave of GCH Equation[J].Nonlinear Analysis:Real World Applications,2007,8(1):136-155.
  • 7YIN Z Y.On the Blow-up Scenario for the Generalized Camassa-Hohm Equation[J].Coinmunications in Partial Differential Equations,2004,29 (5/6):867-877.
  • 8YIN Z Y.Well-posedncss and Blow-up Phenomena for the Periodic Generalized Camassa-Holm Equation[J].Communications on Pure and Applied Analysis,2004,3(3):501 -508.
  • 9SHEN J W,XU W.Bifurcations of Smooth and Non-smooth Travelling Wave Solutions in the Generalized Camassa-Holm Equation[J].Chaos Solitons and Fractals,2005,26 (4):1149-1162.
  • 10WAZWAZ A M.Solitary Wave Solutions for Modified forms of Degasperis-Procesi and Camassa-Holm equations[J].Physics Letters A.2006,352(6):500 -504.

二级参考文献27

  • 1GUO Boling & LIU Zhengrong Institute of Applied Physics and Computational Mathematics, Beijing 100088, China,School of Mathematical Sciences and Center for Nonlinear Science Studies, South China University of Technology, Guangzhou 510640, China.Two new types of bounded waves of CH-γ equation[J].Science China Mathematics,2005,48(12):1618-1630. 被引量:12
  • 2ZHANG WenlingDepartment of Mathematics and Physics, National Natural Science Foundation of China, Beijing 100085, China.General expressions of peaked traveling wave solutions of CH-γ and CH equations[J].Science China Mathematics,2004,47(6):862-873. 被引量:10
  • 3Boyd J P. Peakons and coshoidal waves: travelling wave solutions of the Camassa-Holm equation[J]. Appl Math Comput, 1997, 81(2- 3):173- 187.
  • 4QIAN Ti-fei, TANG Min-ying. Peakons and periodic cusp waves in a generalized Canmssa-Holm equation[J]. Choas, Solitons and Fraetals, 2001,12:1347 - 1360.
  • 5LIU Zheng-rong, QIAN Ti-fei. Peakons and their bifurcation in a generahzed Camassa-Holm equation[J]. International Journal of Bifurcation and Choas, 2001,11 (3) :781 - 792.
  • 6LIU Zheng-rong, QIAN Ti-fei. Peakons of the Camassa-Holm equation[J]. Applied Mathenmtical Modeling, 2002,26: 473- 480.
  • 7Constantin A, Strauss W A. Stability of the Canrmassa-Holm solitons[J] .J Nonlinear Sci, 2002, 12:415- 422.
  • 8Reyes E G. Geometric integrability of thd Camassa-Holm equation[J]. Lett Mafia Phys, 2002, 59(2): 117- 131.
  • 9Guckeenheimer J, Holmes P. Dynamical systems mid bifurcation of vector fields[M]. New York: Springer, 1983.
  • 10Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Phys Rev Lett, 1993, 71 (11):1661 - 1664.

共引文献16

同被引文献59

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部