期刊文献+

UKF在INS/GPS直接法卡尔曼滤波中的应用 被引量:24

Application of UKF in Direct Method of Kalman Filter for INS/GPS
下载PDF
导出
摘要 提出将Unscented卡尔曼滤波(UKF)用于INS/GPS组合导航系统的直接法卡尔曼滤波,避免了对非线性的系统状态方程进行线性化.以INS输出的导航参数及平台误差角等作为系统状态,惯导力学编排方程和姿态误差方程作为系统状态方程,GPS输出的导航参数作为量测,采用UKF方法对系统导航参数直接进行估计.仿真结果表明,UKF方法有效地解决了直接法卡尔曼滤波中系统状态方程的非线性问题,并使INS/GPS组合导航系统具有较高的导航定位精度. In order to avoid the linearization for nonlinear state equations, Unscented Kalman Filter (UKF) was applied to the direct method of Kalman filter for INS/GPS integrated navigation system. Navigation parameters from INS and error angles of platform were chosen as the states of the system, the navigation calculating equations and attitude error equations of INS were the state equations, and navigation parameters from GPS were the measurements. UKF was used to estimate navigation parameters of the integrated system directly. Simulation results show that, UKF effectively solve the nonlinearity problem of state equations in the direct method of Kalman filter, and INS/GPS integrated navigation system has high navigation accuracy by UKF.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第4期842-846,共5页 Chinese Journal of Sensors and Actuators
关键词 Unscented卡尔曼滤波(UKF) 组合导航 惯性导航系统(INS) 全球定位系统(GPS) unscented kalman filter(UKF) integrated navigation inertial navigation system (INS) global positioning system(GPS)
  • 相关文献

参考文献5

  • 1以光衢.惯性导航原理[M].北京:航空工业出版社,1987..
  • 2Julier S J,Uhlmann J K and Durrant-Whyte H. A New Approach for Filtering Nonlinear Systems [C]//Proceedings of the American Control Conference, Washington, 1995 : 1628-1632.
  • 3王建琦,曹喜滨,孙兆伟.基于UKF算法的航天器自主导航研究[J].飞行力学,2004,22(2):41-44. 被引量:12
  • 4王淑一,程杨,杨涤,崔祜涛.UKF方法及其在方位跟踪问题中的应用[J].飞行力学,2003,21(2):59-62. 被引量:23
  • 5John L. Crassidis, F. Landis Markley. Unscented Filtering for Spacecraft Attitude Estimation [J]. Journal of Guidance and Dynamics, 2003, 26 (4): 536-542.

二级参考文献8

  • 1[1]Mark L Psiaki.Autonomous orbit and magnetic field determination using magnetometer and star sensor data[J].Journal of Guidance, Control,and Dynamics,1995,18(3):584-592.
  • 2[2]Liebe C C.Accuracy performance of star trackers-- a tutorial[J].IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):587-599.
  • 3[4]Julier S J,Uhlmann J K,Durrant H F Whyte.A new approach for filtering nonlinear systems[A].Proceedings of the American Control Conference[C].1995.1 628-1 632.
  • 4[5]Wan E A,R Van Der Merwe.The unscented Kalman filter for nonlinear estimation[A].Adaptive Systems for Signal Processing,Communications,and Control Symposium[C].2000.153-158.
  • 5Rudolph van der Merwe,Arnaud Doucet,Nando de Freitas,et a1.The unscented particle filter[R].CUED/F—INFENG/TR 380,2000.
  • 6Zhou Di,Mu Chundi,Xu Wenli.Adaptive two—step filter with applications to bearings—only measurement problem[J].Journal of Guidance,1999,22(5):726—728.
  • 7Neil John Gordon,Davil John Salmond,Smith A F M.Novel approach to nonlinear/non—Gaussian Bayesian state estimation[J].IEE Proceedings—F,1993.140(2):107-113.
  • 8Eric Wan,Rudolph van der Merwe.Kalman filtering and neural networks[D].Wiley Publishing,2001.

共引文献91

同被引文献123

引证文献24

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部