期刊文献+

ON ALTERNATIVE OPTIMAL SOLUTIONS TO QUASIMONOTONIC PROGRAMMING WITH LINEAR CONSTRAINTS 被引量:3

ON ALTERNATIVE OPTIMAL SOLUTIONS TO QUASIMONOTONIC PROGRAMMING WITH LINEAR CONSTRAINTS
下载PDF
导出
摘要 In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented. In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.
作者 Xue Shengjia
机构地区 School of Management
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第1期119-125,共7页 高校应用数学学报(英文版)(B辑)
基金 Supported by the Research Foundation of Jinan University(04SKZD01).
关键词 quasimonotonic programming problem polyhedral set decomposition theorem alternative optimal solution convex simplex method quasimonotonic programming problem, polyhedral set, decomposition theorem, alternative optimal solution, convex simplex method
  • 相关文献

参考文献4

二级参考文献1

  • 1陶惠民.线性规划问题非唯一最优解的存在条件和解集结构[J]应用数学与计算数学学报,1988(01).

共引文献25

同被引文献22

  • 1Xue Shengjia Management College, Jinan University,Guangzhou 510632, P.R. China.Determining the Optimal Solution Set for Linear Fractional Programming[J].Journal of Systems Engineering and Electronics,2002,13(3):40-45. 被引量:15
  • 2薛声家,左小德.确定线性规划全部最优解的方法[J].数学的实践与认识,2005,35(1):101-105. 被引量:10
  • 3薛声家,韩小花.一般形式线性分式规划解集的结构与求法[J].暨南大学学报(自然科学与医学版),2006,27(5):646-651. 被引量:2
  • 4Xue Shengjia.Multiple optimal solutions to a sort of nonlinear optimization problem[J].Journal of Systems Engineering and Electronics,2007,18(1):63-67. 被引量:2
  • 5魏权龄,闫洪.广义最优化理论和模型[M].北京:科学出版社,2005.
  • 6Mangasarian O L. A simple characterization of solution sets of convex programs[J]. Operations Research Letters, 1988, 8 (1) : 21 -26.
  • 7Burke J V, Ferris M C. Characterization of solution sets of con vex programs[J]. Operations Research Letters, 1991, 10 (1) : 57 - 60.
  • 8Jeyakumar V, Yang X Q. On characterizing the solution sets of pseudolinear programs [J]. Journal of Optimization Theory and Applications, 1995, 87(3): 747 - 755.
  • 9Lu Q H, Zeng L F. Characterizations of solution sets of pseud olinear programs [J]. Journal of Fudan University, 2004, 43(1) :130 - 134.
  • 10Hemandez J B, Osuna G R, Rojas M A, et al. Characterization of optimal solutions for nonlinear programming problem with conic constraints[J]. Optimization, 2011, 60(5): 619- 626.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部