期刊文献+

多粒度时间部分周期模型 被引量:1

Multiple time granularity partial periodicity model
下载PDF
导出
摘要 时间的描述和划分是时态数据采掘中一个非常重要的方面,针对目前时态数据采掘中缺少对多粒度时间等的研究的现状,提出了多粒度时间,粒度转换,时态序等的严格数学定义,并研究和证明了它们的相关性质。以此为基础引出了一个多粒度时间部分周期模型,对模型的支持度和置信度等性质进行了详细讨论,并将多粒度时间下的部分周期模型运用到股票数据实验中,实验表明所提出的模型对于研究时态数据采掘具有重要意义。 The description and division of time is a very important aspect; For resolving the problem of lacking research of multiple time granularity at present, a mathematical concepts of multiple time granularity, granularity transform and temporal series is presented. The relationships and properties of model is proved. A multiple time granularity partial periodicity model is introduced based on those. At the same time, the support and confidence properties of model is discussed and is applied to the stock data experiment, which is significant in study of the temporal data mining.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第5期1002-1004,1050,共4页 Computer Engineering and Design
关键词 数据挖掘 多粒度时间 粒度转换 时态序 部分周期 周期模式 data mining multiple time granularity granularity transform temporal series partial periodicity periodicity pattern
  • 相关文献

参考文献13

  • 1Han J,Gong W,Yin Y,Mining segment-wise periodic patterns in time-related databases[C].New York,USA:Int'l Conf Knowledge Discovery and Data Mining,1998.214-218.
  • 2Han J,Dong G,Yin Y.Efficient mining partial periodic patterns in time series database[C].15th International Conference on Data Engineering,1999.106-115.
  • 3Christos Berberidis,Walid G Aref,Mikhail Atallah.Multiple and partial periodicity mining in time series databases[J].ECAI,2002,(2):370-374.
  • 4杨璐,殷华蓓,唐常杰,刘欣,吴碧春.多个拟周期对象关联规则的抗干扰采掘技术[J].四川大学学报(自然科学版),2000,37(5):692-698. 被引量:4
  • 5唐常杰,于中华,游志胜,张天庆,杨璐.基于时态数据库的Web数据周期规律的采掘[J].计算机学报,2000,23(1):52-59. 被引量:18
  • 6Jiong Yang,Wei Wang,Philip S Yu.Mining asynchronous periodic patterns in time series data[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(3):613-628.
  • 7Banu ozden,Sridhar Ramaswamy,Avi silberschatz.Cyclic association rules[C].San Francisco,CA:Proc 14th Int Conf on Data Engineering,2001.412-421.
  • 8Juan M Ale.An approach to discovering temporal association rules[C].Como,Italy:Proceeding of SAC,2002.19-21.
  • 9刘念祖.时态数据挖掘的探讨[J].上海第二工业大学学报,2001,18(2):27-31. 被引量:12
  • 10Claudio Bettini.Testing complex temporal relationships involving multiple granularities and its application to data mining[J].ACM,1996,12(4):86-88.

二级参考文献33

  • 1[1]P.Adriaans and D.Zantinge. Data Mining[M].Addison-Wesley:Harlow,England,1996.
  • 2[2]U.M.Fayyad, G.Piatetsky-Sharpiro, P.Smyth and R.Uthurusamy. Advances in Knowledge Discovery and Data Mining[M]. AAAI/MIT Press,1996.
  • 3[3]G.Piatetsky-Sharpiro, U.M.Fayyad and P.Smyth. From data mining to knowledge discovery: An overview. In U.M.Fayyad et al eds. Advances in Knowledge Discovery and Data Mining, 1-35[M]. AAAI/MIT Press, 1996.
  • 4[4]M.S.Chen,J.Han and P.S.Yu. Data mining: An overview from a database perspective[J]. IEEE Trans.Knowledge and Data Engineering,8:866-883,1996.
  • 5[5]A.Tansel et al eds. Temporal Databases: Theory, Design and Implementation[M]. The Benjamin/Cummings Publishing Company, 1993.
  • 6[6]J.F.Allen. Maintaining Knowledge about Temporal Intervals[J]. Communications of ACM, 26(11),1993.
  • 7[7]R.Agrawal,T.Imielinski and A.Swami. Mining Association Rules between Sets of Items in Large Databases[C]. Proceedings of ACM SIGMOD, May 1993.
  • 8[8]C.J.Date. A guide to the SQL Standard[M]. Addison-Wesley Publishing Company, 1987.
  • 9[9]J.Han et al. DMQL:A Data Mining Query Language for Relational Databases. SIGMOD'96 Workshop on Research Issues on Data Mining and Knowledge Discovery[C]. Canada:Montreal, 1996.
  • 10[10]R.Meo,G.Psaile and S.Ceri. A New SQL-like Operator for Mining Association Rules[C]. Proceedings of 22nd VLDB Conference, Bombay, India, 1996.

共引文献62

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部