期刊文献+

基于BP神经网络的隐式曲面构造方法 被引量:8

Implicit Surfaces Based on BP Neural Networks
下载PDF
导出
摘要 通过把BP神经网络与隐式曲面构造原理相结合,提出构造隐式曲面的新方法.用约束点来描述、控制曲面形状,构造BP网的输入与输出,通过智能学习、仿真模拟,最后从仿真超曲面抽取出的零等值面就是隐式曲面.同时,从理论上证明了此方法所构造的隐式曲面具有任意精度.实验表明该方法对约束点的个数、误差、内外点与边点的距离等不敏感,表现出很好的稳定性与可操作性.该构造方法不仅可用于构造隐式曲面,而且在图形理解、数据分类等领域也具有良好的应用前景. Neural networks, combined with implicit polynomials, can be employed to represent 3D surfaces which are described by the zero-set of a neural network. First, an explicit function is constructed based on the implicit function. Then the explicit function is approximated by a BP neural network. Finally, the zeroset of the neural network which is the implicit surface is extracted from the simulation surface. The method is not sensitive to the error, the number of the constraint points, and the distance between the boundary points and inner/extern points. Experimental results are given to verify the effectiveness of surface reconstruction.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第3期467-472,共6页 Journal of Computer Research and Development
基金 江苏省普通高校自然科学研究计划基金项目(05KJB520032)
关键词 隐式曲面 BP神经网络 曲面重建 拟合 implicit surface BP neural networks surface reconstruction fitting
  • 相关文献

参考文献10

  • 1D Keren,D Gotsman.Fitting curves and surfaces with constrained implicit polynomials[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1999,21(1):31-41
  • 2J F Blinn.A generalization of algebraic surface drawing[J].ACM Trans on Graphics,1982,1(3):235-256
  • 3D Keren,D Cooper.Describing complicated objects by implicit polynomial[J ].IEEE Trans on Pattern Analysis and Machine Intelligence,1994,16(1):38-53
  • 4李道伦,卢德唐,孔祥言.基于径向基函数网络的隐式曲线[J].计算机研究与发展,2005,42(4):599-603. 被引量:8
  • 5A M Cretu,E M Petriu,et al.Neural network architecture for 3D object representation[C].The Conf on Audio and Visual Environments and Their Applications,Haptic,2003
  • 6M Carcenac,A Acan.Modeling an isosurface with a neural network[C].Pacific Conf on Computer Graphics and Applications,Hong Kong,2000
  • 7I P Ivrissimtzis,W K Jeong,H P Seidel.Using growing cell structures for surface reconstruction[C].The Int'l Conf on Shape Modeling and Applications,Seoul,Korea,2003
  • 8Ioannis Ivrissimtzis,et al.Neural meshes surface reconstruction with a learning algorithm[R].Max-Planck-Institut ruer Informatik,Tech Rep:MPI-I,2004.1-16
  • 9Y-H Tseng,J-N Hwang,F H Sheehan.3-D heart contour delineation and motion tracking of ultrasound images using continuous distance transform neural networks[C].The Workshop on Neural Networks for Signal Processing,Kyoto,1996
  • 10K Gurney.An Introduction to Neural Networks[M].London:UCL Press,1997

二级参考文献10

  • 1P.D. Sampson. Fitting conic section to very scattered data: An interactive improvement of the book Stein algorithm. Computer Vision, Graphics, and Image Processing, 1982, 18(1): 97~ 108.
  • 2G. Taubin. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation. IEEE Trans. PAMI, 1991,13(11): 1115~1138.
  • 3D. Keren, D. Cooper. Describing complicated objects by implicit polynomial. IEEE Trans. PAMI, 1994, 16(1): 38~53.
  • 4J. Subrahmonia, D. Cooper, D. Kenren. Practical reliable Bayesian recognition of 2D and 3D objects using implicit polynomials and algebraic invariants. IEEE Trans. Pattern Analysis and Machine Intelligence, 1995, 18(5): 505~519.
  • 5D. Keren, D. Gotsman. Fitting curves and surfaces with constrained implicit polynomials. IEEE Trans. Pattern Analysis and Machine Intelligence, 1999, 21(1): 31~41.
  • 6G. Turk, Huong Quynh Dinh, J. F. O'Brien, et al. Implicit surfaces that interpolate. Shape Modeling and Applications, SMI 2001 International Conference, Genova, Italy, 2001.
  • 7B.S. Morse, T. S. Yoo, P. Rheingans, et al. Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. Shape Modeling and Applications,SMI 2001 International Conference, Genova, Italy, 2001.
  • 8Greg Turk James, F. O' Brien Georgia. Shape transformation using variational implicit functions. Computer Graphics Proceedings, Annual Conference Series, Los Angeles, California,1999.
  • 9陈发来.有理曲线的近似隐式化表示[J].计算机学报,1998,21(9):855-859. 被引量:8
  • 10吴刚,李道伦.基于隐含多项式曲线的物体描述与对称性检测[J].计算机研究与发展,2002,39(10):1337-1342. 被引量:15

共引文献7

同被引文献55

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部