期刊文献+

基于区域奇异性滤波的小目标检测 被引量:5

Detection algorithm of small target based on regional singularity filter
原文传递
导出
摘要 针对复杂背景下红外运动小目标的检测和跟踪存在的难点,提出了基于SUSAN检测思想的滤波方法。该方法是通过构建局部区域的奇异性函数来计算奇异度的,并借鉴Wiener滤波的思想,由最小绝对差确定出灰度差阈值。该滤波方法达到了抑制背景、提高信噪比的目的。 For solving the problem of detection and track of infrared small dim target under complicated cloudy background, a new filter algorithm based on improved SUSAN principle is prop(wed. This algorithm is used to calculate the singularity degree by constructing singularity function of local region and for reference Wiener filter to calculate gray difference threshold by the minimum of absolute dispersion. This filter algorithm achieves the goal of restraining the background and raising SNR.
出处 《光学技术》 EI CAS CSCD 北大核心 2007年第2期163-165,169,共4页 Optical Technique
关键词 图像处理 小目标检测 奇异度 复杂背景 image processing small target detection singularity degree complicated background
  • 相关文献

参考文献8

  • 1Barnett J.Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds[J].Proceedings of SPIE,1989,1050:10-18.
  • 2徐英.红外图像序列中运动弱小目标检测的方法研究[J].红外技术,2002,24(6):27-30. 被引量:37
  • 3Scharfand L L,Friedlander B.Matched subspace detectors[J].IEEE Trans on Sig Proc,1994,42(8):2146-2156.
  • 4Cheng F,Venetsanopoulos A N.An adaptive morphological filter for image processing[J].IEEE Transactions on Image Processing,1992,1(4):533-539.
  • 5Smith S M,Brady J M.SUSAN-a new approach to low level image processing[J].Journal of Computer Vision,1997,23(1):45-78.
  • 6Ercelebi E,Koc S.Lifting-based wavelet domain adaptive wiener filter for image enhancement.Vision,Image and Signal Processing[J].IEEE Proceedings,2006,153(1):31-36.
  • 7张飞,李承芳,史丽娜,孙哓玮.复杂背景下运动点目标的检测算法[J].光学技术,2005,31(1):55-57. 被引量:17
  • 8毕务忠,严高师.基于改进SUSAN原则的小目标检测算法[J].激光与红外,2006,36(6):504-507. 被引量:11

二级参考文献18

  • 1彭嘉雄,彭铁.弱目标检测的图像流法[J].红外与激光工程,1996,25(4):34-40. 被引量:28
  • 2Charlene E C, Jerry S. Jonathan M M. Optimization of point target tracking filters[J].IEEE Transactions on AES,2000,36(1):15-25.
  • 3Barniv Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on AES,1985 ,AES-21:144-156.
  • 4Reed I S, Gagliardi R M, Shao H M. Application of three-dimensional filtering to moving target detection[J].IEEE Translations on AES, 1983,19(6):898-905.
  • 5Chu P L. Optimal projection for multidimensional signal detection[J].IEEE Transactions on Acoustics, Speech and Signal Proceeding,1988,36(5):775-786.
  • 6Shirvaikar M V ,Mohan M. Trivedi. A neural network filter to detect small targets in high clutter backgrounds[J].IEEE Transactions on neural networks,1995,6(1):252-257.
  • 7Eitner P G. Model-based estimation of small targets parameters[J].SPIE,1998,3373:24-31.
  • 8Russo P, Marandey V, Bui T. Optical flow techniques or moving target detection[J]. SPIE, 1990,1383:62-71.
  • 9Horn B K P, Schunck B G. Determining optical flow[J].Artificial Intelligence,1981,17(1):185-203.
  • 10Smith S M, Brady J M. SUSAN-a new approach to low level image processing [J]. Journal of Computer Vision,1997,23 ( 1 ) :45 - 78.

共引文献62

同被引文献48

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部