期刊文献+

Sobolev方程的H^1-Galerkin混合有限元方法 被引量:7

An H^1-Galerkin Mixed Finite Element Method for Sobolev Equations
下载PDF
导出
摘要 利用H^1-Galerkin混合有限元方法分析了一维线性Sobolev方程,得到了未知函数和它的伴随向量函数有限元解的最优阶误差估计,该方法的优点是不需验证相容性条件即可得到和传统混合有限元方法相同的收敛阶数. H^1-Galerkin mixed finite element methods are analysed for solving Sobolev equations. Optimal order error estimates are derived for the finite element solutions of the unknown functions and its gradients in one dimension. The advantage of this method is that the approximations have the same rate convergence as in the classical mixed finite element methods without the LBB consistency conditions.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期145-148,共4页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金(10601022) 内蒙古自然科学基金(200607010106 200607010806) 内蒙古大学513项目
关键词 SOBOLEV方程 H^1-GALERKIN混合有限元方法 最优阶误差估计 Sobolev equation H^1-Galerkin mixed finite element method optimal order error estimate
  • 相关文献

参考文献3

二级参考文献29

  • 1袁益让 王宏.非线性双曲型方程有限元方法的误差估计[J].系统科学与数学,1985,5(3):161-171.
  • 2J.Cannon,Y.Lin,Non-classical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations,Calcolo,25 (1998),187-201.
  • 3J.Douglas,R.E.JR.Dupont and M.F.Wheeler,H1-Galerkin methods for the Laplace and heat equations,Mathematical Aspect of Finite Elements in Partial Differential Equations,C.de Boor,ed.Academic Press,New York,1975,383-415.
  • 4L.Douglas Lr,J.E.Roberts,Global estimates for mixed methods for second order elliptec equations,Math.Comp,444(1985),39-52.
  • 5E.J.Park,Mixed finite elemtnt method for nonlinear second-orderelliptic problems,SIAM J Numer.Anal,32 (1995),865-885.
  • 6P.A.Raviart and J.M.Thomas,A mixed finite element method for second order elliptic problems,Lecture Notes in Math.606,Springer,Brelin,1977,292-315.
  • 7C.Johnson and V.Thomee,Error estimates for some mixed finite element methods for parabolic type problems,Rairo Numer.Anal,15 (1981),41-78.
  • 8J.Squeff,Superconvergence of mixed finite element methods for parabolic equations,V^2 AN,21 (1987),327-352.
  • 9P.Neittaanmaki and J.Saranen,A mixed finite element method for the heat flow problem,BIT,21 (1981),342-346.
  • 10L.C.Cowsar,T.F.Dupont,and M.F.Wheeler,A priori estimates for mixed finite element methods for the wave equations,Comput,Mehtods Appl.Mech,Engrg,82 (1990),205-222.

共引文献54

同被引文献24

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部