期刊文献+

改进的粒子群算法多模态生物医学图像配准 被引量:3

Multimodality medical image registration based on improved particle swarm optimization
下载PDF
导出
摘要 多模态生物医学图像配准在医疗诊断、治疗方案的制定以及身体机能的研究等方面起到越来越大的作用。如何将这些多模态信息融合在一起是目前研究的重点,目前,该融合主要基于图像强度信息的配准方法。该类方法通过最大化化图像间的相似度函数达到配准的目的,但配准过程中使用往往会出现参数变化非凸且不光滑的现象,因而,传统的局部最优方法通常不能得到较好的结果。粒子群算法是一种全局寻优算法,但传统的方法中受初始值的选取以及当前全局最优点的影响,易陷入局部最优。本文对其进行改进,使得即使在初始值离准确值较远时也能得到全局最优,并将该方法用于多模态医学图像配准中,得到了较好的结果。 Biomedical image registration, or geometric alignment of two-dimensional and/or three-dimensional (3-D)image data, is becoming increasingly important in diagnosis,treatment planning,functional studies,computer-guided therapies,and in biomedical research.Registration based on intensity values usually requires optimization of some similarity function between the images.Local optimization techniques frequently fail because these functions with respect to transformation parameters are generally no convex and irregular,and therefore,global methods are often required.In this paper,a new evolutionary approach,particle swarm optimization,is adapted for biomedical image registration.Muhimodal registrations with initial orientations far from the ground troth are performed on three volumes from different modalities.Resuhs of optimizing the normalized mutual information similarity function are compared with various evolutionary strategies.The hybrid particle swarm technique produce more accurate registrations in many cases,with comparable convergence.These results demonstrate that particle swarm approaches,along with evolutionary techniques and local methods,are useful in image registration,and emphasize the need for hybrid approaches for difficult registration problems.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第10期22-26,共5页 Computer Engineering and Applications
基金 香港特区政府研究资助局研究项目(No.CUHK/4185/00E) 香港中文大学研究基金(No.2050345)
关键词 全局最优 图像配准 局部最优 粒子群算法 global optimization image registration local optimization particle swarm optimization
  • 相关文献

参考文献17

  • 1van den Elsen P A,Pol E J D,Viergever M A.Medical image matching-a review with classification[J].IEEE Engineering in Medicine and Biology,1993,12(1):26-39.
  • 2Pelizarri C,Chen G,Speibring D,et al.Accurate three-dimensional registration of CT,PET and/or MR images of the brain[J].Journal of Conputer Assisted Tomography,1989,13(1):20-26.
  • 3Pietrzyk U.Registration of MRI and PET images for clinical applications[M]//Hajnal J V,Hill D L G,Hawkes D J.Medical Image Registration,Boca Raton,FL:CRC,2001.
  • 4Hill D L G,Baichelor P.Registration methodology:concepts and algcrithms[M]//Hajnal J V,Hill D L G,Hawkes D J.Medical Image Registraticn,Boca Raton,FL:CRC,2001.
  • 5Roche A,Pennec X,Malandain G,et al.Rigid registration of 3-D ultrasound with MR images:a new approach combining intensity and gradient information[J].IEEE Trans Med Imag,2001,20(10):1038-1C49.
  • 6Maes F,Collignon A,Vandermeulen D,et al.Multimodality image registration by maximization of mutual information[J].IEEE Trans Med Imag,1997,16(4):187-198.
  • 7Wells W M Ⅲ,Viola P,Atsumi H,et al.Multi-modal volume registration by maximization of mutual infcrmation[J].Med Image Anal,1996,3(1):35-51.
  • 8冯林,张名举,贺明峰,戚正君,滕弘飞.用分层互信息和薄板样条实现医学图像弹性自动配准[J].计算机辅助设计与图形学学报,2005,17(7):1492-1496. 被引量:16
  • 9Eberhart R C,Kennedy J.A new optimizer using particles swarm theory[C]//Froc Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43.
  • 10Kennedy J,Eberhart R C,Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.IEEE Service Center,Piscataway,NJ,1995:1942-1948.

二级参考文献8

  • 1Petra A, Van den Elsen. Medical image matching-A review with classification [J]. IEEE Transactions on Biomedical Engineering, 1993, 16(3): 26~39
  • 2Frederik Maes, Collignon A, Vandermeulen D, et al.Multimodality image registration by maximization of mutual information [J]. IEEE Transactions on Medical Imaging,1997, 16(2): 187~194
  • 3Rohr K, Stiehl H S, Sprengel H S R. Landmark-based elastic registration using approximating thin-plate splines [J]. IEEE Transactions on Medical Imaging, 1999, 20 (6): 526 ~ 543
  • 4Haili Chui. A new algorithm for non-rigid point matching [A].In: Proceedings of Computer Vision and Pattern Recognition,Hilton Head, 2000. 44~51
  • 5Bookstein F L. Principal warps: Thin-plate splines and the decomposition of deformation [J]. IEEE Transactions on Pattern Analysis and machine Intelligence, 1989, 11 (6): 567 ~585
  • 6Likar B, Pernus F. A hierarchical approach to elastic registration based on mutual information [J]. Image and Vision Computing, 2001, 9(1): 31~40
  • 7StudholmeC, Hill D L G, Hawkes D J. An overlap invariant entropy measure of 3D medical alignment [J]. Pattern Recognition,1999, 32(1): 71~ 86
  • 8刘斌,彭嘉雄.图像配准的小波分解方法[J].计算机辅助设计与图形学学报,2003,15(9):1070-1073. 被引量:44

共引文献15

同被引文献27

  • 1张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 2刘建华,樊晓平,瞿志华.一种惯性权重动态调整的新型粒子群算法[J].计算机工程与应用,2007,43(7):68-70. 被引量:49
  • 3Goshtasby A A.2-D and 3-D image registration[M].New Jersey:John Wiley & Sons Inc,2005.
  • 4Bernon J L,Boudousq V, Rohmer.A comparative study of Powell's and downhill simplex algorithms for a fast multimodal surface matching in brain imaging[J].Comput Med Imaging Graph,2001,25: 287-297.
  • 5Fischer D,Kohlhepp P,Bulling F.An evolutionary algorithm for the registration of 3D surface representations[J].Pattern Reeogniton,1999, 32(3 ) : 53-69.
  • 6Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks, Perth,Australis, 1995 : 1942-1948.
  • 7Jiao B,Lian Z.A dynamic inertia weight particle swarm optimization algorithm[J].Chaos, Solitons and Fractals, 2008(37) : 698-705.
  • 8Luo Q,Yi D Y.A co-evolving framework for robust particle swarm optimization[J].Applied Mathematicas and Compution, 2008 ( 199 ) : 611-622.
  • 9Shi Y,Eberhart R.Empirical study of particle swarm optimization[C]// Proc of Congress on Computational Intelligence,Washington D C, USA, 1999:1945-1950.
  • 10Pierri R,Solimene R,Liseno A,et al.Linear distribution imaging of thin metallic cylinders under mutual scattering[J].IEEE Trans Antennas Propag,2005,53(9).

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部