期刊文献+

Wiener滤波在有噪ICA中的应用研究

Study and Application of Wiener Filter in Noisy ICA
下载PDF
导出
摘要 由于实际所观测信号常常掺杂有噪声,直接对其进行独立分量分析(Independent Component Analysis,ICA)将会影响ICA的分离性能.本文将Wiener滤波与ICA进行结合,先对有噪信号进行Wiener滤波,再进行ICA分离.应用上述算法,对有噪图像信号进行仿真实验研究,通过比较降噪前后的峰值信噪比(Peak Signal to Noise Ratio,PSNR),说明该算法的可行性和有效性. Due to the fact of measurement data corrupted with additive noise in many practical applications, the separation performance of ICA ( Independent Component Analysis, ICA) will be influenced without de-noising. The aim of this paper is to demonstrate that wiener filter is extremely attractive for efficient source separation of noisy ICA mixtures. The simulated experiments of woisy images using ICA algorithms aften wiener de-noising are implemented and the PSNR( Peak Signal to Noise Ratio)is used to provide quantitative evaluations of the feasibility and efficiency of the method.
作者 吴洁 何慧龙
出处 《南昌大学学报(工科版)》 CAS 2007年第1期87-90,共4页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金资助项目(50475117)
关键词 WIENER滤波 独立分量分析 盲源分离 降噪 wiener filter independent component analysis blind source separation de-noising
  • 相关文献

参考文献10

  • 1Karhunen J,Hyvarinen A,Vigario R,et al.Applications of Neural Blind Separation to Signal and Image Processing[C]//1997 IEEE Internetunal conference on Aconsitics Speech,and Signal Processing,1997,1:131-134.
  • 2Hoyer P O,Hyvarinen A.Feature Extraction From Color and Stereo Images Using ICA[C]//Proceedings of the IEEE-INNS-ENNS Internetional Joint Conference on Nenral Metworks,2000,34:369-374.
  • 3胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 4叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 5Comon P.Independent Component Analysis,a new Concept?[J].Signal Processing,1994,36:287-314.
  • 6Cichociki A,Gharieb R R,Hoys T.Efficient Extraction of Evoked Potentials by Combination of Wiener Filtering and Subspace Methods[C]// Proceedings of the IEEE Conference on Acoustics,Speech,and Signal Processing,2001,3117-3120.
  • 7聂洪山,沈振康.基于自适应Wiener滤波的红外小目标检测方法[J].红外技术,2004,26(6):54-57. 被引量:5
  • 8Bell A,Sejnowski T.An Information Maximization Approach to Build Separation and Blind Decovolution[J].Neural Computation,1995,7(6):1 129-1 159.
  • 9Cardoso J F.Informax and Maximum Likelihood for Source Separation[J].Signal Processing,1997,4(4):112-114.
  • 10Hyvarinen A.Fast and Robust Fixedpoint Algorithms for Independent Component Analysis[J].Neural Networks,1999,10(3):626-634.

二级参考文献10

  • 1Hyv(a)rinen A,Oja E.Independent Component Analysis:algorithms and applications[J].Neural networks.2000,13:411-430
  • 2Hyv(a)rinen A,Oja E.Independent Component Analysis:A Tutorial[EB/OL].http://www.cis.hut.fi/projects/ica
  • 3Alexander Tartakovsky and Rudolf Blazek. Effective Adaptive Spatial-Temporal Technique for Clutter Rejection in IRST. SPIE Proceedings[J]. Signal and Data Processing of Small Targets, 2000(4048): 1-11.
  • 4I. Reed, R. Gagliardi and L. Stotts. Optical Moving Target Detection With 3-D Matched Filtering[J]. IEEE Trans. Aerosp. Syst., 1988, 24(4): 327-335.
  • 5I. Reed, R. Gagliardi and H. Shao. Application of Three-Dimensional Filtering to Moving Target Detection[J]. IEEE Trans. Aerosp. Syst., 1983, 19(6): 898-905.
  • 6I. Reed, R. Gagliardi and L. Stotts: A Recrusive Moving-Target-Indication Algorithm for Optical Image Seqences[J]. IEEE Trans. Aerosp. Syst., 1990, 26(3):434-440.
  • 7I. Reed and X. Yu: Adaptive Multi-Band CFAR Detection of an Optical Pattern with Unknow Spectral Distribution[J]. IEEE Trans. Acoust. Speech Signal Process,1990, 38(10): 1760-1770.
  • 8Yair Barniv: Dyanmic Programming Solution for Detection Dim Moving Targets[J]. IEEE Trans. Aerosp. Electron. Syst., 1985, 21(1): 144- 156.
  • 9陈进.信号处理在机械设备故障诊断中的应用(连载)[J].振动与冲击,1999,18(1):83-86. 被引量:17
  • 10吴小培,冯焕清,周荷琴,王涛.独立分量分析及其在脑电信号预处理中的应用[J].北京生物医学工程,2001,20(1):35-37. 被引量:32

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部