期刊文献+

基于最小树切割的自适应聚类方法 被引量:2

Adaptive Clustering Algorithm Based on Minimal Spanning Tree Cutting
下载PDF
导出
摘要 为了简单有效地对数据集进行结构分析,提出了一种基于最小树进行聚类的算法(MSTCA).其基本思想是在最小树中切割所有大于一定阈值的边,对数据集进行子类划分,同时对较小的子类进行合并.MSTCA产生的聚类结果在不考虑子类次序时是唯一的。对它的递归调用还可在若干不同粒度层次上形成数据集的聚类结构.计算实验表明,MSTCA不仅能为具有各种不同聚类形状的数据集自适应地选择较好的聚类个数,而且只需简单的参数选择就能准确地分析出数据中存在的合理聚类和例外样本. In order to analyze the structure of a dataset simply and efficiently, this paper proposes a new clustering algorithm based on minimal spanning tree: MSTCA. The basic idea of which is to partition a data set into subclasses by cutting all edges whose lengths are greater than a certain threshold in one of its minimal spanning tree, and to merge those relatively small subclasses at the same time. MSTCA can guarantee a unique clustering result without considering the order of subclasses, and the recursive call to it can generate a hierarchical structure with clusters in some different levels. Computing experiments show that MSTCA can adaptively choose the good number of clusters for a data set with clusters of various shapes and often accurately detect reasonable clusters and outliers in a data set requiring only simple selection of parameters.
作者 李玉鑑
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2007年第3期331-336,共6页 Journal of Beijing University of Technology
基金 北京市自然科学基金(4052005) 北京市属市管高等学校'中青年骨干教师培养计划'资助项目
关键词 最小树 阈值切割 聚类算法 聚类个数 层次聚类 minimal spanning trees threshold cutting clustering algorithms number of clusters hierarchical clustering
  • 相关文献

参考文献26

  • 1RABINER L R, JUANG B H. Fundamentals of speech recognition [M]. Englewood Cliffs: Prentice-Hall, 1993.
  • 2VLAJIC N, CARD H C. Vector quantization of images using modified adaptive resonance algorithm for hierarchical clustering[J]. IEEE Transactions on Neural Networks, 2001, 12(5): 1147-1162.
  • 3SEUNG-JOON O, JAE-YEARN K. A hierarchical clustering algorithm for categorical sequence data[J ]. Information Processing Letters, 2004, 91: 135-140.
  • 4陈宁,陈安,周龙骧,CHEN Ning.大规模交易数据库的一种有效聚类算法(英文)[J].软件学报,2001,12(4):475-484. 被引量:17
  • 5ANDERBERG M R. Cluster analysis for application [M]. New York: Academic Press, 1973.
  • 6JAIN A K, DUBDS R C. Algorithms for clustering data [M]. Englewood Cliffs: Prentice-Hall, 1988.
  • 7杨广文,郑纬民,王鼎兴,李晓明.一种有效的启发式聚类算法[J].电子学报,1999,27(2):90-91. 被引量:10
  • 8张讲社,梁怡,徐宗本.基于视觉系统的聚类算法[J].计算机学报,2001,24(5):496-501. 被引量:17
  • 9刘少辉,胡斐,贾自艳,史忠植.一种基于Rough集的层次聚类算法[J].计算机研究与发展,2004,41(4):552-557. 被引量:18
  • 10GUHA S, RASTOGI R, SHIM K. CURE: an efficient dustering algorithm for large databases [C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998: 73-84.

二级参考文献96

  • 1[1]Jain A K, Dubes R C. Algorithms for Clustering Data. Englewood Cliffs, New Jersey: Prentice-Hall, 1988
  • 2[2]Arabie P, Hubert L J, de Soete G eds. Clustering and Classification. River Edge, NJ: World Scientific Publishing, 1996
  • 3[3]Duda R D, Hart P E. Pattern Classification and Scene Analysis. New York: Wiley, 1974
  • 4[4]Dubes R, Jain A K. Clustering techniques: The user's dilemma. Pattern Recognition, 1976, 8(2):247-260
  • 5[5]Marr D. Vision, A Computational Investigation into the Human Representation. San Francisco: W H Freeman, 1982
  • 6[6]Witkin A P. Scale space filtering. In: Proc the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany(Los Altos, California: The Conferences), 1983. 1019-1022
  • 7[7]Dangman J G. An information-theoretic view of analog representation in striate cortex. In: Computational Neuroscience. Cambridge, Mass; London: MIT Press, 1990. 403-423
  • 8[8]Swindale N V. The development of topography in the visual cortex: A review of models. Network: Computation in Neural Systems, 1996, 7(2):161-247
  • 9[9]Koenderink J J. The structure of images. Biological Cybernetics, 1984, 50(5):363-370
  • 10[10]Romeny B M H, Florack L. A multiscale geometric model of human vision. In: Hendee W R, Wells P N T eds. The Perception of Visual Information. New York: Springer-Verlag, 1993. 73-114

共引文献273

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部