期刊文献+

多模型交通流预测优化 被引量:2

The Optimizing of Many Traffic Flow Forecasting Models
下载PDF
导出
摘要 根据当前交通流预测模型发展的情况,提出采用卡尔曼滤波模型、指数平滑模型和非参数回归模型进行预测融合的方法,该方法在提高系统预测速度的基础上也能提高预测精度,因此,具有很好的推广价值。 According to the development condition of the traffic flow forecasting's models, the comprehensive prediction method, which involve kalman filtering model, exponential smoothing model and nonparametric regressive model. Is put forward. The model not only improve system's prediction speed, but also improve system's prediction precision, so, it has good value to use more.
出处 《交通标准化》 2007年第4期207-210,共4页 Communications Standardization
关键词 短时交通流 交通流预测 模型 信息融合 short-time traffic volume traffic flow forecasting models data fusion
  • 相关文献

参考文献3

二级参考文献8

共引文献239

同被引文献20

  • 1Smith B L, Demetsky M J. Traffic flow forecasting:Comparison of modeling approaches [J]. Journal of Transportation Engineering, 1997, 123(4): 261-266.
  • 2Okutani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory [J].Transportation Research, 1984, 18(1): 1-11.
  • 3Smith B L, Williams B M, Oswald R K. Comparison of parametric and nonparametric models for traffic flow forecasting [J]. Transportation Research: Emerging Technologies, 2002, 10(4): 303-321.
  • 4Chrobok R, Wahle J, Schreckenberg M. Traffic forecast using simulations of large scale networks[C]//2001 IEEE Intelligent Transportation Systems Conference Proceedings. Oakland, USA: IEEE, 2001:434-439.
  • 5Vanajakshi L, Rilett L R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed[C]//2004 IEEE Symposium on Intelligent Vehicles.Parma, Italy: IEEE, 2004: 194-199.
  • 6Kennedy J F, Eberhart R C. Swarm intelligence[M]. San Francisco, USA:Morgan Kaufmann, 2001.
  • 7Tang Q F, Zhao L, Qi R B, et al. Tuning the structure and parameters of a neural network by using cooperative quantum particle swarm algorithm [J]. Applied Mechanics and Materials, 2011, 48(2011): 1328-1332.
  • 8Leung F H F, Lam H K, Ling S H, et al. Tuning of the structure and parameters of neural network using an improved genetic algorithm [J]. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
  • 9Tsai J T, Chou J H, Liu T K. Tuning the structure and parameters of neural network by using hybrid Taguchi-genetic algorithm [J]. IEEE Transactions on Neural Network, 2006, 17(1): 69-80.
  • 10Zhao L, Qian F. Tuning the structure and parameters of a neural network using cooperative binary-real particle swarm optimization [J]. Expert Systems with Applications, 2011, 38(5): 4972-4977.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部