期刊文献+

基于小波去噪和支持向量机的苹果品种识别法 被引量:17

Distinguishing cultivar apples by electronic nose based on multi-resolution decomposition and support vector machine
下载PDF
导出
摘要 本文提出了一种用电子鼻来区分富士、花牛、姬娜3种不同品种苹果气味的方法。首先利用多尺度小波分析对气体传感器的数据进行去噪处理,再用支持向量机建立识别模型,最后通过优化2个支持向量机模型的核函数及其参数,将重叠的苹果气味数据进行高维空间变换用SVM回归模型识别。实验结果表明,第一个支持向量机模型对花牛苹果的识别正确率达到100%,第二个支持向量机模型对姬娜和富士的识别率大于90%。 Electronic nose was used to distinguish three different kinds of cultivar apples - "fuji", "huaniu" and "jina". In the data processing, multi - resolution decomposition was used to de - noise the gas sensor data, and support vector machine (SVM) was used to develop recognition models. Through optimizing the kernel functions of two SVM models and their parameters, the overlapped gas sensor data were mapped into high dimension space, so that, the three kinds of apples can be distinguished with two SVM models. Experiment results show that the first SVM model gives recognition rate of 100% for "huaniu" apple; and the distinguishing rate between "jina" and "fuji" from second SVM model is better than above 90% .
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第3期534-538,共5页 Chinese Journal of Scientific Instrument
基金 国家863计划(2002AA248051) 国家自然科学基金(30370813) 教育部博士点基金(20040299009) 江苏省青年人才启动基金(BK2006552)资助项目。
关键词 电子鼻 多尺度小波分析 支持向量机 苹果 气体传感器 品种 识别 electronic nose multi-resolution decomposition support vector machine apple
  • 相关文献

参考文献17

  • 1GARDNER J W,BARTLET P N.Electronic nose:principles and applications[M].Oxford University Press,1999:1-10.
  • 2MIELLE P,MARQUIS F.One-sensor electronic olfactometer for rapid sorting of fresh fruit juices[J].Sensor and Actuators B,2001,76:470-476.
  • 3MANUELA O,GABRIELA V,GUSTAVO P,et al.Apractical approach for fish freshness determinations using a portable electronic nose[J].Sensors and Actuators B,2001,80:149-154.
  • 4DIETER W H.Discrimination of chocolates and packaging materials by an electronic nose[J].Eur Food Res Teehnol,2001,212:529-533.
  • 5PENZA M,CASSANO G.Chemometric characterization of Italian wines by thin-film multi-sensors array and artificial neural networks[J].Food Chemistry,2004,86:283-296.
  • 6BRUDZEWSKIA K,OSOWSKIB S,MARKIEWICZB T.Classification of milk by means of an electronic noso and SVM neural network[J].Sensors and Actuators B.2004,98:291-298.
  • 7DEHAN L,GHOLAM H H,JOHN R S.Application of ANN with extracted parameters from an electronic nose in cigarette brand identification[J].Sensors and Actuators B.2004,99:253-257.
  • 8SOLIS J L,KISH L B,VAJTAI R,et al.Identifying natural and artrificial odours through noise analysis with a sampling-and-hold electronic nose[J].Sensors and Actuators B,2001,77:312-315.
  • 9ZOU X B.Study of electronic nose on simulation inspecting the process of ferment in the brewage of vinegar[D].Zhenjiang:Jiangsu University,2001,3.
  • 10ZOU X B,ZHAO J W.The study of sensor array signal processing with new genetic algorithms[J].Sensors and Actuators B.2002.87:437-441.

二级参考文献1

共引文献2275

同被引文献182

引证文献17

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部